forked from MaxHalford/eaopt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathga.go
209 lines (200 loc) · 6.14 KB
/
ga.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
package gago
import (
"errors"
"log"
"math/rand"
"sync"
"time"
"golang.org/x/sync/errgroup"
)
// A GA contains population which themselves contain individuals.
type GA struct {
// Fields that are provided by the user
GenomeFactory GenomeFactory `json:"-"`
NPops int `json:"-"` // Number of Populations
PopSize int `json:"-"` // Number of Individuls per Population
Model Model `json:"-"`
Migrator Migrator `json:"-"`
MigFrequency int `json:"-"` // Frequency at which migrations occur
Speciator Speciator `json:"-"`
Logger *log.Logger `json:"-"`
Callback func(ga *GA) `json:"-"`
// Fields that are generated at runtime
Populations Populations `json:"pops"`
Best Individual `json:"best"` // Overall best individual
Age time.Duration `json:"duration"`
Generations int `json:"generations"`
rng *rand.Rand
}
// Validate the parameters of a GA to ensure it will run correctly; some
// settings or combination of settings may be incoherent during runtime.
func (ga GA) Validate() error {
// Check the GenomeFactory presence
if ga.GenomeFactory == nil {
return errors.New("GenomeFactory cannot be nil")
}
// Check the number of populations is higher than 0
if ga.NPops < 1 {
return errors.New("NPops should be higher than 0")
}
// Check the number of individuals per population is higher than 0
if ga.PopSize < 1 {
return errors.New("PopSize should be higher than 0")
}
// Check the model presence
if ga.Model == nil {
return errors.New("Model cannot be nil")
}
// Check the model is valid
var modelErr = ga.Model.Validate()
if modelErr != nil {
return modelErr
}
// Check the migration frequency if a Migrator has been provided
if ga.Migrator != nil && ga.MigFrequency < 1 {
return errors.New("MigFrequency should be strictly higher than 0")
}
// Check the speciator is valid if it has been provided
if ga.Speciator != nil {
if specErr := ga.Speciator.Validate(); specErr != nil {
return specErr
}
}
// No error
return nil
}
// Find the best individual in each population and then compare the best overall
// individual to the current best individual. This method supposes that the
// populations have been preemptively ascendingly sorted by fitness so that
// checking the first individual of each population is sufficient.
func (ga *GA) findBest() {
for _, pop := range ga.Populations {
var best = pop.Individuals[0]
if best.Fitness < ga.Best.Fitness {
ga.Best = best.Clone(pop.rng)
}
}
}
// Initialize each population in the GA and assign an initial fitness to each
// individual in each population. Running Initialize after running Enhance will
// reset the GA entirely.
func (ga *GA) Initialize() {
ga.Populations = make([]Population, ga.NPops)
ga.rng = newRandomNumberGenerator()
var wg sync.WaitGroup
for i := range ga.Populations {
wg.Add(1)
go func(j int) {
defer wg.Done()
// Generate a population
ga.Populations[j] = newPopulation(
ga.PopSize,
ga.GenomeFactory,
randString(3, ga.rng),
)
// Evaluate its individuals
ga.Populations[j].Individuals.Evaluate()
// Sort its individuals
ga.Populations[j].Individuals.SortByFitness()
// Log current statistics if a logger has been provided
if ga.Logger != nil {
ga.Populations[j].Log(ga.Logger)
}
}(i)
}
wg.Wait()
// The initial best individual is initialized randomly
var rng = newRandomNumberGenerator()
ga.Best = NewIndividual(ga.GenomeFactory(rng), rng)
ga.findBest()
// Execute the callback if it has been set
if ga.Callback != nil {
ga.Callback(ga)
}
}
// Enhance each population in the GA. The population level operations are done
// in parallel with a wait group. After all the population operations have been
// run, the GA level operations are run.
func (ga *GA) Enhance() error {
var start = time.Now()
ga.Generations++
// Migrate the individuals between the populations if there are at least 2
// Populations and that there is a migrator and that the migration frequency
// divides the generation count
if len(ga.Populations) > 1 && ga.Migrator != nil && ga.Generations%ga.MigFrequency == 0 {
ga.Migrator.Apply(ga.Populations, ga.rng)
}
var g errgroup.Group
for i := range ga.Populations {
i := i // https://golang.org/doc/faq#closures_and_goroutines
g.Go(func() error {
var err error
// Apply speciation if a positive number of species has been specified
if ga.Speciator != nil {
err = ga.Populations[i].speciateEvolveMerge(ga.Speciator, ga.Model)
if err != nil {
return err
}
} else {
// Else apply the evolution model to the entire population
err = ga.Model.Apply(&ga.Populations[i])
if err != nil {
return err
}
}
// Evaluate and sort
ga.Populations[i].Individuals.Evaluate()
ga.Populations[i].Individuals.SortByFitness()
ga.Populations[i].Age += time.Since(start)
ga.Populations[i].Generations++
// Log current statistics if a logger has been provided
if ga.Logger != nil {
ga.Populations[i].Log(ga.Logger)
}
return err
})
}
if err := g.Wait(); err != nil {
return err
}
// Check if there is an individual that is better than the current one
ga.findBest()
ga.Age += time.Since(start)
// Execute the callback if it has been set
if ga.Callback != nil {
ga.Callback(ga)
}
// No error
return nil
}
func (pop *Population) speciateEvolveMerge(spec Speciator, model Model) error {
var (
species, err = spec.Apply(pop.Individuals, pop.rng)
pops = make([]Population, len(species))
)
if err != nil {
return err
}
// Create a subpopulation from each specie so that the evolution Model can
// be applied to it.
for i, specie := range species {
pops[i] = Population{
Individuals: specie,
Age: pop.Age,
Generations: pop.Generations,
ID: randString(len(pop.ID), pop.rng),
rng: pop.rng,
}
err = model.Apply(&pops[i])
if err != nil {
return err
}
}
// Merge each species back into the original population
var i int
for _, subpop := range pops {
copy(pop.Individuals[i:i+len(subpop.Individuals)], subpop.Individuals)
i += len(subpop.Individuals)
}
return nil
}