forked from calvin-zcx/ndcn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLV_model.py
248 lines (194 loc) · 7.93 KB
/
LV_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import argparse
import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import torch.nn.functional as F
parser = argparse.ArgumentParser('ODE demo')
parser.add_argument('--method', type=str, choices=['dopri5', 'adams'], default='dopri5')
parser.add_argument('--data_size', type=int, default=1000)
parser.add_argument('--batch_time', type=int, default=25)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--niters', type=int, default=2000)
parser.add_argument('--test_freq', type=int, default=20)
parser.add_argument('--viz', action='store_true')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--adjoint', action='store_true')
args = parser.parse_args()
if args.adjoint:
from torchdiffeq import odeint_adjoint as odeint
else:
from torchdiffeq import odeint
device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu')
true_y0 = torch.tensor([[0.9, 1.8]]) # shape: 1 * 2
# true_y0 = torch.tensor([[0.1, 0.2]])
t = torch.linspace(0., 25., args.data_size) # shape: 1000
t = torch.linspace(-5., 5., args.data_size) # shape: 1000
# true_A = torch.tensor([[-0.1, 2.0], [-2.0, -0.1]]) # shape: 2 * 2
true_A = torch.tensor([[2.0/3, -4.0/3], [1, -1]])
# true_A = torch.tensor([[0, 1], [-1, 0.85]])
#
# true_A = torch.tensor([[0, 1], [-1, -0.45]])
class Lambda(nn.Module):
# In this code, row vector: y'^T = y^T A^T textbook format: column vector y' = A y
def forward(self, t, y):
# return F.leaky_relu(torch.mm(y**3, true_A))
# return F.tanh(torch.mm(y ** 3, true_A))
# return torch.mm(y ** 3, true_A)
# return torch.mm(y ** 3, true_A)
x = torch.tensor([[y[0, 0], y[0, 0] * y[0, 1]], [y[0, 0] * y[0, 1], y[0, 1]]])
y1 = torch.diag(torch.mm(x, true_A.t()))
# y1 = F.tanh(y1)
# result = y1/torch.sum(y1)
# result = F.normalize(y1)
# return torch.mm(y, true_A.t())
return y1
with torch.no_grad():
true_y = odeint(Lambda(), true_y0, t, method='dopri5') # shape: 1000 * 1 * 2
print(true_y.shape) # batchsize*1*2
# my = torch.mean(true_y[:,0,1])
# vy = torch.std(true_y[:,0,1])
# true_y[:,0,1] = (true_y[:,0,1] - my) / vy
#
# mx = torch.mean(true_y[:, 0, 0])
# vx = torch.std(true_y[:, 0, 0])
# true_y[:, 0, 1] = (true_y[:, 0, 1] - mx) / vx
# test ground truth
plt.plot(true_y[:,0,0].numpy(), true_y[:,0,1].numpy(), '-o')
plt.show()
def get_batch():
s = torch.from_numpy(np.random.choice(np.arange(args.data_size - args.batch_time, dtype=np.int64), args.batch_size, replace=False))
# s: 20
batch_y0 = true_y[s] # (M, D) 500*1*2
batch_y0 = batch_y0.squeeze() # 500 * 2
batch_t = t[:args.batch_time] # (T) 19
batch_y = torch.stack([true_y[s + i] for i in range(args.batch_time)], dim=0)
# (T, M, D) 19*500*1*2 from s and its following batch_time sample
batch_y = batch_y.squeeze() # 19 * 500 * 2
return batch_y0, batch_t, batch_y
def makedirs(dirname):
if not os.path.exists(dirname):
os.makedirs(dirname)
if args.viz:
makedirs('png')
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(12, 4), facecolor='white')
ax_traj = fig.add_subplot(131, frameon=False)
ax_phase = fig.add_subplot(132, frameon=False)
ax_vecfield = fig.add_subplot(133, frameon=False)
fig.tight_layout()
# plt.show(block=False)
def visualize(true_y, pred_y, odefunc, itr):
if args.viz:
ax_traj.cla()
ax_traj.set_title('Trajectories')
ax_traj.set_xlabel('t')
ax_traj.set_ylabel('x,y')
ax_traj.plot(t.numpy(), true_y.numpy()[:, 0, 0], t.numpy(), true_y.numpy()[:, 0, 1], 'g-')
ax_traj.plot(t.numpy(), pred_y.numpy()[:, 0, 0], '--', t.numpy(), pred_y.numpy()[:, 0, 1], 'b--')
ax_traj.set_xlim(t.min(), t.max())
ax_traj.set_ylim(-2, 5)
# ax_traj.legend()
# plt.show()
ax_phase.cla()
ax_phase.set_title('Phase Portrait')
ax_phase.set_xlabel('x')
ax_phase.set_ylabel('y')
ax_phase.plot(true_y.numpy()[:, 0, 0], true_y.numpy()[:, 0, 1], 'g-')
ax_phase.plot(pred_y.numpy()[:, 0, 0], pred_y.numpy()[:, 0, 1], 'b--')
ax_phase.set_xlim(-2, 5)
ax_phase.set_ylim(-2, 5)
# plt.show()
ax_vecfield.cla()
ax_vecfield.set_title('Learned Vector Field')
ax_vecfield.set_xlabel('x')
ax_vecfield.set_ylabel('y')
y, x = np.mgrid[-2:2:21j, -2:2:21j]
dydt = odefunc(0, torch.Tensor(np.stack([x, y], -1).reshape(21 * 21, 2))).cpu().detach().numpy()
mag = np.sqrt(dydt[:, 0]**2 + dydt[:, 1]**2).reshape(-1, 1)
dydt = (dydt / mag)
dydt = dydt.reshape(21, 21, 2)
ax_vecfield.streamplot(x, y, dydt[:, :, 0], dydt[:, :, 1], color="black")
ax_vecfield.set_xlim(-2, 5)
ax_vecfield.set_ylim(-2, 5)
plt.show()
fig.savefig('png/{:03d}'.format(itr))
plt.draw()
plt.pause(0.001)
class ODEFunc(nn.Module):
def __init__(self):
super(ODEFunc, self).__init__()
# self.net = nn.Sequential(
# nn.Linear(2, 10),
# #nn.BatchNorm1d(10),
# nn.Tanh(), # nn.ReLU(), #
# nn.Linear(10, 2) #,
# # nn.BatchNorm1d(2),
# )
self.net = nn.Sequential(
nn.Linear(2, 20),
nn.Tanh(),
nn.Linear(20, 2),
)
# self.scale = nn.Parameter(torch.FloatTensor([1])) # [0.01])) # np.random.rand(1) *
# self.bias = nn.Parameter(torch.FloatTensor([0]))
# for m in self.net.modules():
# if isinstance(m, nn.Linear):
# # nn.init.normal_(m.weight, mean=0, std=0.1)
# # nn.init.constant_(m.bias, val=0)
# nn.init.normal_(m.weight, mean=0, std=0.1)
# nn.init.normal_(m.bias, mean=1, std=1)
# # nn.init.constant_(m.bias, val=0)
def forward(self, t, y):
# z = y*1.0
# z[:,0,1] = y[:,0,0] * y[:,0,1]
# A = torch.tensor([[0.5, 0.5], [0.5, 0.5]])
result = self.net(y) #* self.scale + self.bias
return result #self.net(y) * self.scale + self.bias #*self.scale y = batchsize * 1 * 2
class RunningAverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, momentum=0.99):
self.momentum = momentum
self.reset()
def reset(self):
self.val = None
self.avg = 0
def update(self, val):
if self.val is None:
self.avg = val
else:
self.avg = self.avg * self.momentum + val * (1 - self.momentum)
self.val = val
if __name__ == '__main__':
ii = 0
func = ODEFunc()
# optimizer = optim.RMSprop(func.parameters(), lr=1e-3)
optimizer = optim.Adam(func.parameters(), lr=1e-2, weight_decay=1e-3)
end = time.time()
time_meter = RunningAverageMeter(0.97)
loss_meter = RunningAverageMeter(0.97)
for itr in range(1, args.niters + 1):
optimizer.zero_grad()
batch_y0, batch_t, batch_y = get_batch() # batch_y0: 20*1*2 batch_t:10 batch_y: 10*20*1*2
# batch_y0 = true_y0
# batch_t = t
# batch_y = true_y
pred_y = odeint(func, batch_y0, batch_t, method='rk4' ) # 'dopri5'
# loss = torch.mean(torch.abs(pred_y - batch_y))
# loss = F.mse_loss(pred_y, batch_y)
loss = F.l1_loss(pred_y, batch_y)
loss.backward()
optimizer.step()
time_meter.update(time.time() - end)
loss_meter.update(loss.item())
if itr % args.test_freq == 0:
with torch.no_grad():
pred_y = odeint(func, true_y0, t)
loss = torch.mean(torch.abs(pred_y - true_y))
print('Iter {:04d} | Total Loss {:.6f}'.format(itr, loss.item()))
visualize(true_y, pred_y, func, ii)
ii += 1
end = time.time()