forked from calvin-zcx/ndcn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgene_dynamics.py
455 lines (408 loc) · 21 KB
/
gene_dynamics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import os
import argparse
import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import torch.nn.functional as F
import networkx as nx
import datetime
from utils_in_learn_dynamics import *
from neural_dynamics import *
import torchdiffeq as ode
import sys
import functools
print = functools.partial(print, flush=True)
parser = argparse.ArgumentParser('Gene Regulation Dynamic Case')
parser.add_argument('--method', type=str,
choices=['dopri5', 'adams', 'explicit_adams', 'fixed_adams','tsit5', 'euler', 'midpoint', 'rk4'],
default='euler') # dopri5
parser.add_argument('--rtol', type=float, default=0.01,
help='optional float64 Tensor specifying an upper bound on relative error, per element of y')
parser.add_argument('--atol', type=float, default=0.001,
help='optional float64 Tensor specifying an upper bound on absolute error, per element of y')
parser.add_argument('--lr', type=float, default=0.01,
help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=1e-3,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--dropout', type=float, default=0,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--hidden', type=int, default=20,
help='Number of hidden units.')
parser.add_argument('--time_tick', type=int, default=100) # default=10)
parser.add_argument('--sampled_time', type=str,
choices=['irregular', 'equal'], default='irregular')
parser.add_argument('--niters', type=int, default=2000)
parser.add_argument('--test_freq', type=int, default=20)
parser.add_argument('--viz', action='store_true')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--adjoint', action='store_true')
parser.add_argument('--n', type=int, default=400, help='Number of nodes')
parser.add_argument('--sparse', action='store_true')
parser.add_argument('--network', type=str,
choices=['grid', 'random', 'power_law', 'small_world', 'community'], default='grid')
parser.add_argument('--layout', type=str, choices=['community', 'degree'], default='community')
parser.add_argument('--seed', type=int, default=0, help='Random Seed')
parser.add_argument('--T', type=float, default=5., help='Terminal Time')
parser.add_argument('--operator', type=str,
choices=['lap', 'norm_lap', 'kipf', 'norm_adj' ], default='norm_lap')
parser.add_argument('--baseline', type=str,
choices=['ndcn', 'no_embed', 'no_control', 'no_graph',
'lstm_gnn', 'rnn_gnn', 'gru_gnn'],
default='differential_gcn')
parser.add_argument('--dump', action='store_true', help='Save Results')
# parser.add_argument('--dump_appendix', type=str, default='',
# help='dump_appendix to distinguish results file, e.g. same as baseline name')
# use args.baseline instead
args = parser.parse_args()
if args.gpu >= 0:
device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu')
else:
device = torch.device('cpu')
if args.viz:
dirname = r'figure/gene/' + args.network
makedirs(dirname)
fig_title = r'Gene Regulation Dynamics'
if args.dump:
results_dir = r'results/gene/' + args.network
makedirs(results_dir)
# Build network # A: Adjacency matrix, L: Laplacian Matrix, OM: Base Operator
n = args.n # e.g nodes number 400
N = int(np.ceil(np.sqrt(n))) # grid-layout pixels :20
seed = args.seed
if args.network == 'grid':
print("Choose graph: " + args.network)
A = grid_8_neighbor_graph(N)
G = nx.from_numpy_array(A.numpy())
elif args.network == 'random':
print("Choose graph: " + args.network)
G = nx.erdos_renyi_graph(n, 0.1, seed=seed)
G = networkx_reorder_nodes(G, args.layout)
A = torch.FloatTensor(nx.to_numpy_array(G))
elif args.network == 'power_law':
print("Choose graph: " + args.network)
G = nx.barabasi_albert_graph(n, 5, seed=seed)
G = networkx_reorder_nodes(G, args.layout)
A = torch.FloatTensor(nx.to_numpy_array(G))
elif args.network == 'small_world':
print("Choose graph: " + args.network)
G = nx.newman_watts_strogatz_graph(400, 5, 0.5, seed=seed)
G = networkx_reorder_nodes(G, args.layout)
A = torch.FloatTensor(nx.to_numpy_array(G))
elif args.network == 'community':
print("Choose graph: " + args.network)
n1 = int(n/3)
n2 = int(n/3)
n3 = int(n/4)
n4 = n - n1 - n2 -n3
G = nx.random_partition_graph([n1, n2, n3, n4], .25, .01, seed=seed)
G = networkx_reorder_nodes(G, args.layout)
A = torch.FloatTensor(nx.to_numpy_array(G))
if args.viz:
makedirs(r'figure/network/')
visualize_graph_matrix(G, args.network)
D = torch.diag(A.sum(1))
L = (D - A)
# equally-sampled time
# sampled_time = 'irregular'
if args.sampled_time == 'equal':
print('Build Equally-sampled -time dynamics')
t = torch.linspace(0., args.T, args.time_tick) # args.time_tick) # 100 vector
# train_deli = 80
id_train = list(range(int(args.time_tick * 0.8))) # first 80 % for train
id_test = list(range(int(args.time_tick * 0.8), args.time_tick)) # last 20 % for test (extrapolation)
t_train = t[id_train]
t_test = t[id_test]
elif args.sampled_time == 'irregular':
print('Build irregularly-sampled -time dynamics')
# irregular time sequence
sparse_scale = 10
t = torch.linspace(0., args.T, args.time_tick * sparse_scale) # 100 * 10 = 1000 equally-sampled tick
t = np.random.permutation(t)[:int(args.time_tick * 1.2)]
t = torch.tensor(np.sort(t))
t[0] = 0
# t is a 120 dim irregularly-sampled time stamps
id_test = list(range(args.time_tick, int(args.time_tick * 1.2))) # last 20 beyond 100 for test (extrapolation)
id_test2 = np.random.permutation(range(1, args.time_tick))[:int(args.time_tick * 0.2)].tolist()
id_test2.sort() # first 20 in 100 for interpolation
id_train = list(set(range(args.time_tick)) - set(id_test2)) # first 80 in 100 for train
id_train.sort()
t_train = t[id_train]
t_test = t[id_test]
t_test2 = t[id_test2]
if args.operator == 'lap':
print('Graph Operator: Laplacian')
OM = L
elif args.operator == 'kipf':
print('Graph Operator: Kipf')
OM = torch.FloatTensor(zipf_smoothing(A.numpy()))
elif args.operator == 'norm_adj':
print('Graph Operator: Normalized Adjacency')
OM = torch.FloatTensor(normalized_adj(A.numpy()))
else:
print('Graph Operator[Default]: Normalized Laplacian')
OM = torch.FloatTensor(normalized_laplacian(A.numpy())) # L # normalized_adj
if args.baseline in ['lstm_gnn', 'rnn_gnn', 'gru_gnn']:
print('For temporal-gnn model lstm_gnn, rnn_gnn, and gru_gnn'
'Graph Operator Choose: Kipf in GCN')
OM = torch.FloatTensor(zipf_smoothing(A.numpy()))
if args.sparse:
# For small network, dense matrix is faster
# For large network, sparse matrix cause less memory
L = torch_sensor_to_torch_sparse_tensor(L)
A = torch_sensor_to_torch_sparse_tensor(A)
OM = torch_sensor_to_torch_sparse_tensor(OM)
# Initial Value
x0 = torch.zeros(N, N)
x0[int(0.05*N):int(0.25*N), int(0.05*N):int(0.25*N)] = 25 # x0[1:5, 1:5] = 25 for N = 20 or n= 400 case
x0[int(0.45*N):int(0.75*N), int(0.45*N):int(0.75*N)] = 20 # x0[9:15, 9:15] = 20 for N = 20 or n= 400 case
x0[int(0.05*N):int(0.25*N), int(0.35*N):int(0.65*N)] = 17 # x0[1:5, 7:13] = 17 for N = 20 or n= 400 case
x0 = x0.view(-1, 1).float()
energy = x0.sum()
class GeneDynamics(nn.Module):
def __init__(self, A, b, f=1, h=2):
super(GeneDynamics, self).__init__()
self.A = A # Adjacency matrix
self.b = b
self.f = f
self.h = h
def forward(self, t, x):
"""
:param t: time tick
:param x: initial value: is 2d row vector feature, n * dim
:return: dxi(t)/dt = -b*xi^f + \sum_{j=1}^{N}Aij xj^h / (1 + xj^h)
If t is not used, then it is autonomous system, only the time difference matters in numerical computing
"""
if hasattr(self.A, 'is_sparse') and self.A.is_sparse:
f = -self.b * (x ** self.f) + torch.sparse.mm(self.A, x**self.h / (x**self.h + 1))
else:
f = -self.b * (x ** self.f) + torch.mm(self.A, x ** self.h / (x ** self.h + 1))
return f
with torch.no_grad():
solution_numerical = ode.odeint(GeneDynamics(A, 1), x0, t, method='dopri5') # shape: 1000 * 1 * 2
print(solution_numerical.shape)
now = datetime.datetime.now()
appendix = now.strftime("%m%d-%H%M%S")
zmin = solution_numerical.min()
zmax = solution_numerical.max()
for ii, xt in enumerate(solution_numerical, start=1):
if args.viz and (ii % 10 == 1):
print(xt.shape)
visualize(N, x0, xt, '{:03d}-tru'.format(ii)+appendix, fig_title, dirname, zmin, zmax)
true_y = solution_numerical.squeeze().t().to(device) # 120 * 1 * 400 --squeeze--> 120 * 400 -t-> 400 * 120
true_y0 = x0.to(device) # 400 * 1
true_y_train = true_y[:, id_train].to(device) # 400*80 for train
true_y_test = true_y[:, id_test].to(device) # 400*20 for extrapolation prediction
if args.sampled_time == 'irregular':
true_y_test2 = true_y[:, id_test2].to(device) # 400*20 for interpolation prediction
L = L.to(device) # 400 * 400
OM = OM.to(device) # 400 * 400
A = A.to(device)
# Build model
input_size = true_y0.shape[1] # y0: 400*1 , input_size:1
hidden_size = args.hidden # args.hidden # 20 default # [400 * 1 ] * [1 * 20] = 400 * 20
dropout = args.dropout # 0 default, not stochastic ODE
num_classes = 1 # 1 for regression
# Params for discrete models
input_n_graph= true_y0.shape[0]
hidden_size_gnn = 5
hidden_size_rnn = 10
flag_model_type = "" # "continuous" "discrete" input, model, output format are little different
# Continuous time network dynamic models
if args.baseline == 'ndcn':
print('Choose model:' + args.baseline)
flag_model_type = "continuous"
model = NDCN(input_size=input_size, hidden_size=hidden_size, A=OM, num_classes=num_classes,
dropout=dropout, no_embed=False, no_graph=False, no_control=False,
rtol=args.rtol, atol=args.atol, method=args.method)
elif args.baseline == 'no_embed':
print('Choose model:' + args.baseline)
flag_model_type = "continuous"
model = NDCN(input_size=input_size, hidden_size=input_size, A=OM, num_classes=num_classes,
dropout=dropout, no_embed=True, no_graph=False, no_control=False,
rtol=args.rtol, atol=args.atol, method=args.method)
elif args.baseline == 'no_control':
print('Choose model:' + args.baseline)
flag_model_type = "continuous"
model = NDCN(input_size=input_size, hidden_size=hidden_size, A=OM, num_classes=num_classes,
dropout=dropout, no_embed=False, no_graph=False, no_control=True,
rtol=args.rtol, atol=args.atol, method=args.method)
elif args.baseline == 'no_graph':
print('Choose model:' + args.baseline)
flag_model_type = "continuous"
model = NDCN(input_size=input_size, hidden_size=hidden_size, A=OM, num_classes=num_classes,
dropout=dropout, no_embed=False, no_graph=True, no_control=False,
rtol=args.rtol, atol=args.atol, method=args.method)
# Discrete time or Sequential network dynamic models
elif args.baseline == 'lstm_gnn':
print('Choose model:' + args.baseline)
flag_model_type = "discrete"
# print('Graph Operator: Kipf') # Using GCN as graph embedding layer
# OM = torch.FloatTensor(zipf_smoothing(A.numpy()))
# OM = OM.to(device)
model = TemporalGCN(input_size, hidden_size_gnn, input_n_graph, hidden_size_rnn, OM, dropout=dropout, rnn_type='lstm')
elif args.baseline == 'gru_gnn':
print('Choose model:' + args.baseline)
flag_model_type = "discrete"
model = TemporalGCN(input_size, hidden_size_gnn, input_n_graph, hidden_size_rnn, OM, dropout=dropout, rnn_type='gru')
elif args.baseline == 'rnn_gnn':
print('Choose model:' + args.baseline)
flag_model_type = "discrete"
model = TemporalGCN(input_size, hidden_size_gnn, input_n_graph, hidden_size_rnn, OM, dropout=dropout, rnn_type='rnn')
model = model.to(device)
# model = nn.Sequential(*embedding_layer, *neural_dynamic_layer, *semantic_layer).to(device)
num_paras = get_parameter_number(model)
if __name__ == '__main__':
t_start = time.time()
params = model.parameters()
optimizer = optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay)
criterion = F.l1_loss # F.mse_loss(pred_y, true_y)
# time_meter = RunningAverageMeter(0.97)
# loss_meter = RunningAverageMeter(0.97)
if args.dump:
results_dict = {
'args': args.__dict__,
'v_iter': [],
'abs_error': [],
'rel_error': [],
'true_y': [solution_numerical.squeeze().t()],
'predict_y': [],
'abs_error2': [],
'rel_error2': [],
'predict_y2': [],
'model_state_dict': [],
'total_time': []}
for itr in range(1, args.niters + 1):
optimizer.zero_grad()
if flag_model_type == "continuous":
pred_y = model(t_train, true_y0) # 80 * 400 * 1 should be 400 * 80
pred_y = pred_y.squeeze().t()
loss_train = criterion(pred_y, true_y_train) # true_y) # 400 * 20 (time_tick)
# torch.mean(torch.abs(pred_y - batch_y))
relative_loss_train = criterion(pred_y, true_y_train) / true_y_train.mean()
elif flag_model_type == "discrete":
# true_y_train = true_y[:, id_train] # 400*80 for train
pred_y = model(true_y_train[:, :-1]) # true_y_train 400*80 true_y_train[:, :-1] 400*79
# pred_y = pred_y.squeeze().t()
loss_train = criterion(pred_y, true_y_train[:, 1:]) # true_y) # 400 * 20 (time_tick)
# torch.mean(torch.abs(pred_y - batch_y))
relative_loss_train = criterion(pred_y, true_y_train[:, 1:]) / true_y_train[:, 1:].mean()
else:
print("flag_model_type NOT DEFINED!")
exit(-1)
loss_train.backward()
optimizer.step()
# time_meter.update(time.time() - t_start)
# loss_meter.update(loss.item())
if itr % args.test_freq == 0:
with torch.no_grad():
if flag_model_type == "continuous":
# pred_y = model(true_y0).squeeze().t() # odeint(model, true_y0, t)
# loss = criterion(pred_y, true_y)
# relative_loss = criterion(pred_y, true_y) / true_y.mean()
pred_y = model(t, true_y0).squeeze().t() # odeint(model, true_y0, t)
loss = criterion(pred_y[:, id_test], true_y_test)
relative_loss = criterion(pred_y[:, id_test], true_y_test) / true_y_test.mean()
if args.sampled_time == 'irregular': # for interpolation results
loss2 = criterion(pred_y[:, id_test2], true_y_test2)
relative_loss2 = criterion(pred_y[:, id_test2], true_y_test2) / true_y_test2.mean()
elif flag_model_type == "discrete":
pred_y = model(true_y_train, future=len(id_test)) #400*100
# pred_y = pred_y.squeeze().t()
loss = criterion(pred_y[:, id_test], true_y_test) #pred_y[:, id_test] 400*20
# torch.mean(torch.abs(pred_y - batch_y))
relative_loss = criterion(pred_y[:, id_test], true_y_test) / true_y_test.mean()
if args.dump:
# Info to dump
results_dict['v_iter'].append(itr)
results_dict['abs_error'].append(loss.item()) # {'abs_error': [], 'rel_error': [], 'X_t': []}
results_dict['rel_error'].append(relative_loss.item())
results_dict['predict_y'].append(pred_y[:, id_test])
results_dict['model_state_dict'].append(model.state_dict())
if args.sampled_time == 'irregular': # for interpolation results
results_dict['abs_error2'].append(loss2.item()) # {'abs_error': [], 'rel_error': [], 'X_t': []}
results_dict['rel_error2'].append(relative_loss2.item())
results_dict['predict_y2'].append(pred_y[:, id_test2])
# now = datetime.datetime.now()
# appendix = now.strftime("%m%d-%H%M%S")
# results_dict_path = results_dir + r'/result_' + appendix + '.' + args.dump_appendix
# torch.save(results_dict, results_dict_path)
# print('Dump results as: ' + results_dict_path)
if args.sampled_time == 'irregular':
print('Iter {:04d}| Train Loss {:.6f}({:.6f} Relative) '
'| Test Loss {:.6f}({:.6f} Relative) '
'| Test Loss2 {:.6f}({:.6f} Relative) '
'| Time {:.4f}'
.format(itr, loss_train.item(), relative_loss_train.item(),
loss.item(), relative_loss.item(),
loss2.item(), relative_loss2.item(),
time.time() - t_start))
else:
print('Iter {:04d}| Train Loss {:.6f}({:.6f} Relative) '
'| Test Loss {:.6f}({:.6f} Relative) '
'| Time {:.4f}'
.format(itr, loss_train.item(), relative_loss_train.item(),
loss.item(), relative_loss.item(),
time.time() - t_start))
now = datetime.datetime.now()
appendix = now.strftime("%m%d-%H%M%S")
with torch.no_grad():
if flag_model_type == "continuous":
pred_y = model(t, true_y0).squeeze().t() # odeint(model, true_y0, t)
loss = criterion(pred_y[:, id_test], true_y_test)
relative_loss = criterion(pred_y[:, id_test], true_y_test) / true_y_test.mean()
if args.sampled_time == 'irregular': # for interpolation results
loss2 = criterion(pred_y[:, id_test2], true_y_test2)
relative_loss2 = criterion(pred_y[:, id_test2], true_y_test2) / true_y_test2.mean()
elif flag_model_type == "discrete":
pred_y = model(true_y_train, future=len(id_test)) # 400*100
loss = criterion(pred_y[:, id_test], true_y_test) # pred_y[:, id_test] 400*20
relative_loss = criterion(pred_y[:, id_test], true_y_test) / true_y_test.mean()
if args.sampled_time == 'irregular':
print('Iter {:04d}| Train Loss {:.6f}({:.6f} Relative) '
'| Test Loss {:.6f}({:.6f} Relative) '
'| Test Loss2 {:.6f}({:.6f} Relative) '
'| Time {:.4f}'
.format(itr, loss_train.item(), relative_loss_train.item(),
loss.item(), relative_loss.item(),
loss2.item(), relative_loss2.item(),
time.time() - t_start))
else:
print('Iter {:04d}| Train Loss {:.6f}({:.6f} Relative) '
'| Test Loss {:.6f}({:.6f} Relative) '
'| Time {:.4f}'
.format(itr, loss_train.item(), relative_loss_train.item(),
loss.item(), relative_loss.item(),
time.time() - t_start))
if args.viz:
for ii in range(pred_y.shape[1]):
if ii % 10 == 0:
xt_pred = pred_y[:, ii].cpu()
# print(xt_pred.shape)
visualize(N, x0, xt_pred,
'{:03d}-{:s}-'.format(ii+1, args.baseline)+appendix,
fig_title, dirname, zmin, zmax)
t_total = time.time() - t_start
print('Total Time {:.4f}'.format(t_total))
num_paras = get_parameter_number(model)
if args.dump:
results_dict['total_time'] = t_total
results_dict_path = results_dir + r'/result_' + appendix + '.' + args.baseline #args.dump_appendix
torch.save(results_dict, results_dict_path)
print('Dump results as: ' + results_dict_path)
# Test dumped results:
rr = torch.load(results_dict_path)
fig, ax = plt.subplots()
ax.plot(rr['v_iter'], rr['abs_error'], '-', label='Absolute Error')
ax.plot(rr['v_iter'], rr['rel_error'], '--', label='Relative Error')
legend = ax.legend( fontsize='x-large') # loc='upper right', shadow=True,
# legend.get_frame().set_facecolor('C0')
fig.savefig(results_dict_path + ".png", transparent=True)
fig.savefig(results_dict_path + ".pdf", transparent=True)
plt.show()
plt.pause(0.001)
plt.close(fig)
# --time_tick 20 --niters 2500 --network grid --dump --dump_appendix differential_gcn --baseline differential_gcn --viz
# python heat_dynamics.py --time_tick 20 --niters 2500 --network grid --dump --dump_appendix differential_gcn --baseline differential_gcn --viz