forked from calvin-zcx/ndcn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
227 lines (192 loc) · 7.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import argparse
import time
import datetime
# import torch
import torch.nn.functional as F
import torch.optim as optim
from models import *
import pandas as pd
# import propagation as prp
# import scipy.sparse as sp
# import numpy as np
from utils import *
from sms import *
# Arguments
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--fastmode', action='store_true', default=False,
help='Validate during training pass.')
parser.add_argument('--seed', type=int, default=-1, help='Random seed.')
parser.add_argument('--epochs', type=int, default=200,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01,
help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('-nhl', '--nHiddenLayers', type=int, default=0, help='Number of Hidden layers.')
parser.add_argument('--hidden', type=int, default=16,
help='Number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.5,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--dataset', type=str, default="cora",
help='Dataset to use.')
parser.add_argument('--model', type=str, default="GCN",
choices=["DeepGCN", "GCN", "DeepGCN2", "DeepGCN3", "DeepGCN4"],
help='model to use.')
parser.add_argument('--iter', type=int, default=1, help='Number of experiments to conduct')
parser.add_argument('--dump', action='store_true', default=False,
help='Dump results to time appendix file.')
parser.add_argument('--delta', type=float, default=1.0, help='Scale of signals from neighborhoods')
parser.add_argument('--sms', action='store_true', default=False,
help='Send results short message to my Phone.')
args, _ = parser.parse_known_args()
# Test if we can use GPU
args.cuda = not args.no_cuda and torch.cuda.is_available()
# set random seed for debug and reproduce
if args.seed != -1:
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
T_VERY_BEGINING = time.time()
# Input dataset
adj, features, labels, idx_train, idx_val, idx_test = load_data("cora", args.delta)
if args.cuda:
adj = adj.cuda()
features = features.cuda()
labels = labels.cuda()
idx_train = idx_train.cuda()
idx_val = idx_val.cuda()
idx_test = idx_test.cuda()
# Model and optimizer
if args.model == "GCN":
model = GCN(input_size=features.shape[1],
hidden_size=args.hidden,
num_classes=labels.max().item() + 1,
dropout=args.dropout,
num_middle_layers=args.nHiddenLayers)
elif args.model == "DeepGCN":
model = DeepGCN(input_size=features.shape[1],
hidden_size=args.hidden,
num_classes=labels.max().item() + 1,
dropout=args.dropout,
num_middle_layers=args.nHiddenLayers)
elif args.model == 'DeepGCN2':
model = DeepGCN2(adj,
input_size=features.shape[1],
hidden_size=args.hidden,
num_classes=labels.max().item() + 1,
dropout=args.dropout,
num_middle_layers=args.nHiddenLayers)
elif args.model == 'DeepGCN3':
model = DeepGCN3(input_size=features.shape[1],
hidden_size=args.hidden,
num_classes=labels.max().item() + 1,
num_nodes= features.shape[0],
dropout=args.dropout,
num_middle_layers=args.nHiddenLayers)
adj = adj.to_dense()
elif args.model == 'DeepGCN4':
model = DeepGCN4(input_size=features.shape[1],
hidden_size=args.hidden,
num_classes=labels.max().item() + 1,
dropout=args.dropout,
num_middle_layers=args.nHiddenLayers)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# Send to GPU
if args.cuda:
model.cuda()
def train(ITER, epoch):
t = time.time()
model.train()
optimizer.zero_grad()
output = model(features, adj)
loss_train = F.cross_entropy(output[idx_train], labels[idx_train])
acc_train = accuracy(output[idx_train], labels[idx_train])
loss_train.backward()
optimizer.step()
if not args.fastmode:
# Evaluate validation set performance separately,
# deactivates dropout during validation run.
model.eval()
output = model(features, adj)
loss_val = F.cross_entropy(output[idx_val], labels[idx_val])
acc_val = accuracy(output[idx_val], labels[idx_val])
print('ITER: {:04d}'.format(ITER + 1),
'Epoch: {:04d}'.format(epoch + 1),
'loss_train: {:.4f}'.format(loss_train.item()),
'acc_train: {:.4f}'.format(acc_train.item()),
'loss_val: {:.4f}'.format(loss_val.item()),
'acc_val: {:.4f}'.format(acc_val.item()),
'time: {:.4f}s'.format(time.time() - t))
def test():
model.eval()
output = model(features, adj)
loss_test = F.cross_entropy(output[idx_test], labels[idx_test])
acc_test = accuracy(output[idx_test], labels[idx_test])
print("Test set results:",
"loss= {:.4f}".format(loss_test.item()),
"accuracy= {:.4f}".format(acc_test.item()))
return loss_test.item(), acc_test.item()
if args.dump:
fname = "results/results_{}.txt".format(datetime.datetime.now().__str__().replace(':', '-'))
fout = open(fname, "w")
fout.write(vars(args).__str__()+"\n")
fout.write("Time\tLoss\tAccuracy\tStep\n")
for ITER in range(args.iter):
# Train model
t_start = time.time()
for epoch in range(args.epochs):
train(ITER, epoch)
print("Optimization Finished!")
t_total = time.time() - t_start
print("Total time elapsed: {:.4f}s".format(t_total))
# Testing
with torch.no_grad():
loss_test, acc_test = test()
time_step = list(model.parameters())[0].item()
if args.dump:
fout.write("{:.5f}\t{:.5f}\t{:.5f}\t{:.5f}\n".format(t_total, loss_test, acc_test, time_step))
fout.flush()
T_TOTAL = time.time() - T_VERY_BEGINING
sms_str = "DONE!\nTotal time: {:.4f}s;\n".format(T_TOTAL)
print(sms_str)
if args.dump:
fout.close()
r = pd.read_csv(fname, delimiter='\t', skiprows=1)
rmean = r.loc[:, 'Accuracy'].mean()
rstd = r.loc[:, 'Accuracy'].std()
rmedian = r.loc[:, 'Accuracy'].median()
rmin = r.loc[:, 'Accuracy'].min()
rmax = r.loc[:, 'Accuracy'].max()
time_step = r.loc[:, 'Step'].mean()
print(vars(args).__str__())
print('results: {:.3f}% +/- {:.3f}%, {:.3f}%;'.format(rmean*100, rstd*100, rmedian*100))
print('Min_Acc: {:.3f}%, Max_Acc: {:.3f}%'.format(rmin*100, rmax*100))
print('Time_Step: {:.5f};'.format(time_step))
sms_str += 'Mean_Acc: {:.3f}% +/- {:.3f}%;\nMedian_acc" {:.3f}%;\n'.format(rmean*100, rstd*100, rmedian*100)
sms_str += 'Min_Acc: {:.3f}%, Max_Acc: {:.3f}%\n'.format(rmin*100, rmax*100)
sms_str += 'Time_Step: {:.5f};\n'.format(time_step)
sms_str += ('Settings: ' + vars(args).__str__())
if args.sms:
mysms = SMS()
mysms.send_sms(sms_str)
# np.random.seed(42)
# a = np.random.randint(2, size=(10, 2))
# a = np.array([[0,1,1], [1,0,0], [1,0,0]])
# print(a)
# A = sp.csr_matrix(a)
# print(A)
# P = prp.Propagation(A)
# Ap = P.row_normalization()
# print(Ap.toarray())
# print(Ap.sum(1))
#
# Ap1 = P.zipf_smoothing()
# print(Ap1.toarray())
# print(Ap1.sum(1))
#
# Ap2 = P.__aug_normalized_adjacency__()
# print(Ap2.toarray())
# print(Ap2.sum(1))