From ef601f2dd8d9ea23fab45c8566afcaf93d098bfd Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Diego=20Crist=C3=B3bal=20Herreros?= Date: Sat, 4 Feb 2023 23:32:52 +0100 Subject: [PATCH] Feat: add Makefile and clean lebron data to predict points --- .gitignore | 2 + Makefile | 9 + entrega.ipynb | 1221 ++++++++++++++++++++++++++++++++++++++++++++----- 3 files changed, 1109 insertions(+), 123 deletions(-) create mode 100644 Makefile diff --git a/.gitignore b/.gitignore index defdce7..beae844 100644 --- a/.gitignore +++ b/.gitignore @@ -1,6 +1,8 @@ # Fichero con las variables de kaggle .env +# Variables Makefile +Makefile.local # Dataframes en local dataframes/* diff --git a/Makefile b/Makefile new file mode 100644 index 0000000..e483e8c --- /dev/null +++ b/Makefile @@ -0,0 +1,9 @@ +include Makefile.local + +deps: + @echo "Installing dependencies..." + @pip install -r requirements.txt + +dev: deps + @echo "Starting development server..." + @jupyter notebook entrega.ipynb \ No newline at end of file diff --git a/entrega.ipynb b/entrega.ipynb index d465678..ed6eb93 100644 --- a/entrega.ipynb +++ b/entrega.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 144, + "execution_count": 312, "metadata": {}, "outputs": [], "source": [ @@ -43,9 +43,10 @@ "from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis\n", "from sklearn.gaussian_process import GaussianProcessClassifier\n", "from sklearn.gaussian_process.kernels import RBF\n", - "from sklearn.metrics import RocCurveDisplay\n", + "from sklearn.metrics import RocCurveDisplay, mean_absolute_error, mean_absolute_percentage_error, r2_score\n", "import warnings\n", "import random\n", + "import kaggle\n", "warnings.filterwarnings('ignore')" ] }, @@ -58,7 +59,7 @@ }, { "cell_type": "code", - "execution_count": 145, + "execution_count": 313, "metadata": {}, "outputs": [ { @@ -83,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 146, + "execution_count": 314, "metadata": {}, "outputs": [], "source": [ @@ -103,7 +104,7 @@ }, { "cell_type": "code", - "execution_count": 147, + "execution_count": 315, "metadata": {}, "outputs": [ { @@ -949,7 +950,7 @@ }, { "cell_type": "code", - "execution_count": 148, + "execution_count": 316, "metadata": {}, "outputs": [ { @@ -1065,7 +1066,7 @@ }, { "cell_type": "code", - "execution_count": 149, + "execution_count": 317, "metadata": {}, "outputs": [ { @@ -1262,7 +1263,7 @@ }, { "cell_type": "code", - "execution_count": 150, + "execution_count": 318, "metadata": {}, "outputs": [ { @@ -1686,7 +1687,7 @@ }, { "cell_type": "code", - "execution_count": 151, + "execution_count": 319, "metadata": {}, "outputs": [ { @@ -2105,7 +2106,7 @@ }, { "cell_type": "code", - "execution_count": 152, + "execution_count": 320, "metadata": {}, "outputs": [ { @@ -2180,7 +2181,7 @@ }, { "cell_type": "code", - "execution_count": 153, + "execution_count": 321, "metadata": {}, "outputs": [ { @@ -2474,7 +2475,7 @@ }, { "cell_type": "code", - "execution_count": 154, + "execution_count": 322, "metadata": { "scrolled": true }, @@ -2660,7 +2661,7 @@ }, { "cell_type": "code", - "execution_count": 155, + "execution_count": 323, "metadata": {}, "outputs": [ { @@ -2669,7 +2670,7 @@ "" ] }, - "execution_count": 155, + "execution_count": 323, "metadata": {}, "output_type": "execute_result" }, @@ -2690,7 +2691,7 @@ }, { "cell_type": "code", - "execution_count": 156, + "execution_count": 324, "metadata": {}, "outputs": [], "source": [ @@ -2699,7 +2700,7 @@ }, { "cell_type": "code", - "execution_count": 157, + "execution_count": 325, "metadata": { "scrolled": true }, @@ -2731,7 +2732,7 @@ "dtype: int64" ] }, - "execution_count": 157, + "execution_count": 325, "metadata": {}, "output_type": "execute_result" } @@ -2749,7 +2750,7 @@ }, { "cell_type": "code", - "execution_count": 158, + "execution_count": 326, "metadata": { "scrolled": false }, @@ -2795,7 +2796,7 @@ }, { "cell_type": "code", - "execution_count": 159, + "execution_count": 327, "metadata": {}, "outputs": [], "source": [ @@ -2818,7 +2819,7 @@ }, { "cell_type": "code", - "execution_count": 160, + "execution_count": 328, "metadata": { "scrolled": false }, @@ -3445,7 +3446,7 @@ "[20 rows x 21 columns]" ] }, - "execution_count": 160, + "execution_count": 328, "metadata": {}, "output_type": "execute_result" } @@ -3463,7 +3464,7 @@ }, { "cell_type": "code", - "execution_count": 161, + "execution_count": 329, "metadata": { "scrolled": true }, @@ -3474,7 +3475,7 @@ "" ] }, - "execution_count": 161, + "execution_count": 329, "metadata": {}, "output_type": "execute_result" }, @@ -3504,7 +3505,7 @@ }, { "cell_type": "code", - "execution_count": 162, + "execution_count": 330, "metadata": { "scrolled": true }, @@ -3537,7 +3538,7 @@ }, { "cell_type": "code", - "execution_count": 163, + "execution_count": 331, "metadata": { "scrolled": true }, @@ -3545,10 +3546,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 163, + "execution_count": 331, "metadata": {}, "output_type": "execute_result" }, @@ -3588,7 +3589,7 @@ }, { "cell_type": "code", - "execution_count": 164, + "execution_count": 332, "metadata": { "scrolled": false }, @@ -3669,7 +3670,7 @@ }, { "cell_type": "code", - "execution_count": 165, + "execution_count": 333, "metadata": { "scrolled": true }, @@ -3703,7 +3704,7 @@ }, { "cell_type": "code", - "execution_count": 166, + "execution_count": 334, "metadata": { "scrolled": true }, @@ -3737,7 +3738,7 @@ }, { "cell_type": "code", - "execution_count": 167, + "execution_count": 335, "metadata": {}, "outputs": [ { @@ -3769,7 +3770,7 @@ }, { "cell_type": "code", - "execution_count": 168, + "execution_count": 336, "metadata": {}, "outputs": [ { @@ -3801,7 +3802,7 @@ }, { "cell_type": "code", - "execution_count": 169, + "execution_count": 337, "metadata": { "scrolled": true }, @@ -3820,7 +3821,7 @@ }, { "cell_type": "code", - "execution_count": 170, + "execution_count": 338, "metadata": { "scrolled": true }, @@ -4020,7 +4021,7 @@ "[5 rows x 21 columns]" ] }, - "execution_count": 170, + "execution_count": 338, "metadata": {}, "output_type": "execute_result" } @@ -4039,7 +4040,7 @@ }, { "cell_type": "code", - "execution_count": 171, + "execution_count": 339, "metadata": {}, "outputs": [ { @@ -4112,7 +4113,7 @@ "4 2022-12-21 22200468 2022" ] }, - "execution_count": 171, + "execution_count": 339, "metadata": {}, "output_type": "execute_result" } @@ -4131,7 +4132,7 @@ }, { "cell_type": "code", - "execution_count": 172, + "execution_count": 340, "metadata": {}, "outputs": [ { @@ -4322,7 +4323,7 @@ "[5 rows x 23 columns]" ] }, - "execution_count": 172, + "execution_count": 340, "metadata": {}, "output_type": "execute_result" } @@ -4341,7 +4342,7 @@ }, { "cell_type": "code", - "execution_count": 173, + "execution_count": 341, "metadata": {}, "outputs": [ { @@ -4574,7 +4575,7 @@ "[5 rows x 22 columns]" ] }, - "execution_count": 173, + "execution_count": 341, "metadata": {}, "output_type": "execute_result" } @@ -4593,7 +4594,7 @@ }, { "cell_type": "code", - "execution_count": 174, + "execution_count": 342, "metadata": { "scrolled": false }, @@ -4604,13 +4605,13 @@ "" ] }, - "execution_count": 174, + "execution_count": 342, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAHgCAYAAAAL2HHvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMW0lEQVR4nOzdfVhUZf4/8DdPMzwNgyDDqKDSVgJh6SLpxEqoBBVWLLhZmo+YmztkgrlGuWS2LaWWaw/iViqWoYaFBeUDCQ6ZY+oUKiikaWHhIKUMagIDnN8f/uZ8GWFgQHRQ36/rOtfFnHOf+/6cMzNnPpxz7vvYCYIggIiIiIhsxt7WARARERHd7JiQEREREdkYEzIiIiIiG2NCRkRERGRjTMiIiIiIbIwJGREREZGNMSEjIiIisjEmZEREREQ2xoSMiIiIyMaYkFGPFhkZCTs7O0RGRto6FJvJzMyEnZ0d7Ozs8NNPP9k6HCKiG5Ytf3Nu6IRs586d4g/Z5ZOrqysGDBiAuLg4ZGVlobGx0dbhUg/1008/iZ+bqVOn2jocukzL7/nChQttHQ4RUZfc0AlZey5evIiKigp89tlnmDhxIu655x7o9Xpbh9WugQMHMikgIrqKeFaebOWmSchmzZqFQ4cOiZNWq8Vbb72FgQMHAgD27duHRx55BHzWOhEREV1rjrYO4FpRKBQICQkxmzdixAhMnDgRd999N44dO4a9e/ciLy8PDz30kI2iJCIiopvRTXOGzJJevXohNTVVfL1161YbRkNEREQ3o5s+IQOAu+++W/z7559/Fv+2tndby5u+MzMzWy2fOnUq7OzsxMujNTU1SEtLwx133AE3Nzd4enoiIiICH330UZv1m+5pMMW2du3aVp0ULN3vsGvXLkyaNAkDBw6Es7MzPD09MXToUCxYsADV1dXt7pe6ujq8+eabiIyMhI+PD5ycnODl5YVBgwbhgQcewBtvvHHFvf727NmDv/3tb1AqlXB2dkZAQABmzpyJ8vLyTtVz7NgxJCcnY/DgwZDL5XBxccEtt9yCqVOnYv/+/VcUY3f57rvv8NRTT2HQoEFwd3eHm5sbBg0ahFmzZuGHH36wup76+nosXboUf/7znyGXy+Hh4YHhw4djxYoVaGpqsrje5ffGHD16FElJSbjtttvg6ura5uf8p59+QnJyMu644w7IZDK4urritttuw9///nccOnSo3Tgvv9F+3759ePzxx+Hn5wepVIp+/fph0qRJOHLkiNXb3lWnTp3CihUrMG7cONx2221wc3MTY3jkkUewceNGNDc3W1y/ZceBnTt3QhAErFq1Cn/5y1/g7e0NDw8P3H333fjwww/N1mtoaMDKlSsxYsQIeHl5QSaTITw8HB9//LFVcev1erzwwgsYNmwYvLy8IJVK4e/vj0cffRRfffVVu+s2NTUhMzMTMTExUCqVkEgkkMvluO222zBmzBj85z//weHDh62K43KXf5bKy8sxc+ZMBAQEwNnZGX369MGjjz6KPXv2WFVfV49Tl78vzc3NWL16NUaNGgVfX1/Y29tbfc+t6Tit0WgAABqNptVx1nQMv5zBYEB6ejrCw8Ph4+MDiUSCPn364KGHHsKmTZvavRXm8u9JYWEh4uLi0LdvX7i4uCAoKAgvv/wyLly4YLbel19+iQcffFAsFxwcjPT0dDQ0NFhs6/L7kE3fSX9/fzg7O8Pf3x/Tpk1DWVmZVfssNzcX48aNE7/T3t7eUKlUePXVV3H+/HmL613+21pfX4///ve/GDFiBHr37t2qg05DQwNyc3ORlJSEsLAw9OrVC05OTvD29sbw4cOxcOFC/Pbbb1bFfKW/OVd6LGmXcAMrLCwUAAgAhBdffNFiubKyMrHc/fffL85fs2aNOP/EiRMW1z9x4oRYbs2aNa2WT5kyRQAgDBgwQCgrKxMGDhwolr98UqvVrda/9957LZY3Tffee6/ZOk1NTYJarW53HblcLmzfvr3NbaqsrBSCg4M7bHfu3LkW90tH3njjDcHe3r7Net3c3IQvvvhC3PbLt6+lJUuWCE5OThZjtLOzE/71r391Oc6W7++UKVM6vX5TU5OQnJws2NnZWYzR0dFR+N///tfm+i0/h999950QGhpqsZ6IiAjh3LlzbdbTcl9u3rxZcHNza7V+y8/52rVrBalUarEtBwcH4T//+Y/F7W753XvnnXcER0fHNutxdXUVNBpNp/erSUff88bGRoufs5bTfffdZ3HftWxj+/btwkMPPWSxntmzZwuCIAhnzpwRIiIiLJZ75ZVX2t2udevWtfketZwSExMFo9HYat1z584JI0eO7HCbExISOr/DBfPP0pdffmkxTnt7e2HZsmUW67nS41TL92XLli1CVFRUq/Wt/c6ajtPtTQMGDGi13ldffSV4e3u3u96DDz5o8bPV8rObnp5u8Thxzz33COfPnxeam5uF2bNnW2zr/vvvFxobG9tsa8CAAeI+WbVqlcXvpFQqFT7++GOL++rixYvCX//613a3uW/fvsL333/f5votj2n79u0ThgwZ0mr9lt9la94bb29vYdeuXRZjFoQr/83pjmNJe5iQCYKQnZ0tlps+fbo4v7sTMh8fH+G2224TZDKZsGDBAmHnzp3C/v37hffee0/w8/MT69i6davZ+sePHxcOHTok9O3bVwAgPPLII8KhQ4fMpuPHj5utM2/ePLG+gIAAYeXKlcLevXuFwsJCITk5WUxgJBKJUFxc3CrmhIQEcf0nnnhC+PTTT4U9e/YI+/btEz7//HMhLS1NuOuuu7qckH366admB9z//Oc/wu7du4Xdu3cL//73vwUPDw/B09NTuO222yx+OQRBEBYvXizWc+eddwoZGRnCV199Jezfv1/46KOPBJVKJS5fvnx5l2K90oTsH//4h7h+RESEsHr1amHnzp3C3r17hffee0+44447xOWfffZZq/Vbfg7DwsIEAML48eOFL7/8Uti/f7+QlZUlzgcgxMXFtRmH6UATEBAguLu7Cz4+PsKrr74qfPPNN8KePXuEt956S6iurhYEQRDy8vLEHwZ3d3fhxRdfFL7++mtBq9UKr7/+utC7d2+xvRUrVrTZnmn5iBEjBHt7e+Guu+4SVq9eLezbt08oKioSkpOTxYNb//79hfr6+k7vW0Ho+HtuNBoFe3t7YfTo0cKSJUuErVu3CjqdTti5c6ewevVqs8/I5MmTO2xj+PDhAgBh4sSJwhdffCHodDph/fr1wqBBg8Qy+fn5wsMPPyw4OjoKs2bNErZv3y7odDph1apV4vfYwcFBKCkpabO9jRs3ivv/lltuEd544w0x7k8++UR48MEHxbaSk5NbrT937lxx+dixY4X169cL33zzjaDT6YQtW7YI//nPf4R77rlHGDduXJf2uemzdNtttwmenp6tvsOvvPKK4OHhIcaQk5PTZj1Xepxq+b7ceeedAgDh4YcfFj799FNBp9MJX375pbBhwwartumXX34RDh06JAwbNkwAIAwbNqzVcba8vNxsnV27dokx+vr6Cv/+97+F3NxcQafTCbm5ucITTzwhxhcfH99mu6bld999twBAUKlUQlZWlrB//35h69atwgMPPCCWeeGFF4TXX39dACA88MADwieffCLodDrhs88+E0aMGCGWy8jIaLMtU0J21113CU5OTkLfvn2Ft956S/j2228FjUYjzJ8/X/wnzMnJSdi3b1+b9Tz66KNiW3fddZfwwQcfCPv27RO2bdsmTJs2Tfzsenl5Cb/88kur9Vse0+68807Bzs5OmDx5svh9ysnJEb788kux/MSJE4VbbrlFmDt3rrBx40ZBq9UK+/btEzZt2iQ89dRTgkQiEX9jq6qq2oy5O35zuuNY0p6bPiEzGo1mH+QPPvhAXNbdCZnpg9DWQfjo0aOCs7OzeEBpS8v/btpz8OBB8YcuJCREOHv2bKsyW7ZsEcvcfffdZssuXrwoHmQ6Srh+//33dpe3pb6+XvxRksvlwuHDh1uVOXTokNkBva0vR2lpqRjniy++KDQ3N7cq09TUJB4U3d3dhTNnznQ63itJyLZv3y6u+/7777dZ5uLFi8Lo0aMF4NJ/4Jef8Wj5OQTQ5lkpo9EoxMTEiGW++OKLVmVanmnt27ev8PPPP7cZT0NDg/j+uLu7t/lf7k8//ST06dNHAC6d4TIlci21jPnBBx9sM+H697//LZb59NNP24ynIx19z5ubm4WjR4+2W0daWpoAXDqb+sMPP7TbBgDhv//9b6syp06dEmQymfjDYGdn12YicuDAAfG7Zzqb1lJ1dbUgl8sF4NI/iG2dARMEQXj++ecF4NJZqLKyMrNl/v7+AoAOE66ufH8FwfyzZOk7XFJSIn6H+/XrJzQ0NJgtv9LjlCC0fl8WLFjQpe1pa9vaOysvCJe+J6arHffff79w4cKFNsu9++67YnxtnelrGX9CQkKrs1uNjY3ib5RMJhOcnZ2FOXPmtKrnwoUL4m/EnXfe2WYspuWmY82pU6dalSkoKBDPnIWFhbVanpeXJ9YxZsyYNr/XLbf50UcfbbX88mOapWOjybFjx9o8vpscPHhQcHd3t/gZ6K7fnO44lrTnpk3Izp8/L+zcuVOIjIw0+4DW1dWJZa5GQvbmm29arOexxx4T/6toi7UJ2axZs8T29uzZY7HcjBkzxHJ79+4V5//666/i/LbO2Fypjz/+WKx/6dKlFsu99tpr7X45pk+fLgCX/pNt78t69uxZ8b++d999t9PxXklCZkq0Oro0dPjwYYsH7cv/m7S0rSdPnhQT1NjY2FbLW/6ItvzH43IbN24Uy7366qsWy61bt04st3jx4lbLTcucnZ0t/tdaW1sr/nfb1pkea1h7Jrw9jY2N4lm/tj6Tl58hs2Ty5MliufHjx1ssZ7qUOXTo0FbLFi1aJCYxLY9HlzMajUK/fv0EAMLzzz9vtsz0OejqWeGOtPwsWfsdzs7ONlt2pccpQTB/X26//XaLl+o6w9qE7IMPPhA/36dPn263rOns14QJE1otM8Xv6upqMUFevXq1WM7f379VcmtiSgYACDU1Na2Wt0zINm3aZDHelu/N5WfJTGfsnJychIqKCot1mC4fOzo6CpWVlWbLWh7TRo8ebbGOzpgzZ46Y3F+uu35zrNHRsaQ9N81N/S+99JLZzZnu7u6IjIzEzp07AVwaFmPz5s2QSqVXLQY7OztMmDDB4vLQ0FAAwJkzZ1BTU9Pldkw3+95xxx0YPny4xXJPPvlkq3UAwNvbGxKJBADw4YcfdvtTDExt2dnZYcqUKRbLTZs2DXZ2dhaX5+bmAgASEhLaLefp6YnBgwcDALRabVdC7pLa2lrx8zVu3Lh2ywYFBaF3794A2o9xypQpFrfVz88P0dHRAC7d7GzpBn+JRIK//e1vFtto+f5Mnz7dYrm//e1vkMvlZuu05b777oNCoWhzmUwmw2233QYAOH78uMU6ulNzczMqKytRXl6OkpISlJSU4MiRI/Dz8wMAHDhwoN31H3vsMYvL7rrrrk6Va2ubP//8cwDA2LFj2z0eOTo6QqVSAWj9menTpw8AYOPGjfjjjz8s1nGlOvMdvvwzcqXHqcuNHz8eDg4OVsXdHUzv07333gsfH592y0ZERABo/7t93333wcvLq81lLT9X8fHxcHJy6rDciRMnLLbVq1cvPPLIIxaXt/zet9znjY2NYqeH6Oho+Pv7W6zD9L41NjaKx8G2TJw40eIyS86ePYsff/wRpaWl4nfY09MTAHD48GEYjUaz8t31m3O5Kz2WXO6mScgsCQgIwLx583Do0CEMGTLkqrbVu3dveHt7W1ze8st47ty5LrVRX1+Po0ePAkC7BzkAGDp0qPjFLikpEedLpVKMHz8eALBp0ybceuut+Oc//4kvv/zyihJFE1PvvICAADEJaYuPj4/FXk0///yz2PsqNTXV4iOyTJOpp+W1fBrD999/L/a2efzxxzuM0dRLqL0Yw8LC2m3T1GP4woULFhOc2267Dc7OzhbrMH0WAgIC2v2hkUgkGDp0qNk6bQkMDGw3ZtPnvqufeWsIgoB169Zh1KhRcHd3R79+/RAYGIjBgweLU3FxMQB02Fvr9ttvt7jM9KNgbbnLt7mpqUmM43//+1+Hn5lNmzYBaP2ZMf3o7N69GwEBAUhKSkJOTk6HPas7qzPf4Za9crvjOHW5O++809qwu4XpmLJt27YO36elS5cCaP+73Z2fK6D979PQoUPh6Gh5GNIhQ4aI/5S3fN+OHz8uJvgdvW8tl3fH+3bo0CFMnz4dffr0gZeXF2699VaEhISI319Tr8zm5macPXu21brAlf3mmHTnseRyN83AsLNmzcI//vEPAJeyZGdnZ/Tu3Vv8D/9acHV1bXe5vf3/5cftDV/QnpYfREtnJUxM3Yb1ej3OnDljtuztt99GTU0NcnNz8fPPP2PJkiVYsmQJ7O3t8ec//xmPPvooZs6c2aX9Z2qro/gAwNfXt83/9E6fPt3pdgFc1bMFl7saMXa0z3x9fcW/L39PTXr16tVuHZ15f5RKZbttAdZ/7rv6me9IXV0d4uPjsWXLFqvKX7x4sd3l7W1Py++wNeUu7x5/5syZLp2Rvvwz869//Qu//vor1qxZg9OnT+Odd97BO++8A+DSGamEhAT84x//MPu8dEVnvsMtPyPddZxqqaPPdXfryve7vc9Wd36ugPa/Tx3tc0dHR3h5ebXa5y3/7qgO07Hh8vUuZ837tmrVKjz11FNWfzcu38/d8ZsDdP+x5HI3TULW1kj9N7rOnHq9nIeHBz7//HPs3bsXH3/8MXbu3Ini4mI0NTVh//792L9/P5YuXYrNmzeLl02uZXwtDzZpaWntXoJryc3NrcttdlbLGP/3v//hnnvusWq99g5QV7LPTKy9rNMdbfUEr7zyingAvffee6FWq/HnP/8ZSqUSLi4u4o9YREQEvv76a5s+Pq3lZ2bGjBl45plnrFrPdDbDxMnJCatWrcLcuXOxfv16FBQUYP/+/WhoaEBpaSlKS0vxxhtvYN26de1euupId3xGuutzdi0vVwL/91498MADWLx48TVt+0pdT+9bWVmZmIwpFArMmzcPo0ePxsCBAyGTycSzp6tXr0ZiYiIAWPwOX2nMV/tYctMkZF3R8r+N9gZ6u3zAPltq+WNeVVXVbtnGxkb8/vvvAGDx3oW7775bvAx27tw57Ny5E5mZmfj0009x+vRpJCQk4Mcff4SLi0unY+wovvbKtLz06+Tk1COT7ZYxurq6dkuMVVVV7V6yaLm/LL2nHTGtZ837Y7oE09W2rjZBEPD+++8DAEaOHImCggKz73VL7f0Xf6203I+CIFzxZyY4OBgvv/wyXn75ZdTV1WHXrl3IysrCBx98gPPnz+Pxxx/Hjz/+KN5z1lmd+Q633LbuPk7Zgre3NyorK9HQ0NAjjz/tsWafm74PLfd5y787qqPl5dkred8yMzPR2NgIBwcHaDQai7dAWHMW7kp+c67FseSmv4esPTKZTPz78mvSLXVmlPUrYU12L5VKxZukv/3223bLfv/99+LNj9YcUGQyGR566CF88sknmD17NoBLoxbv2rWrw3VbMt1gf+LECfFA25bq6mqLTwK45ZZbxMul33zzTafav1aGDBkivmfdFeO+ffusWu7q6opbbrmlS22YPgsnTpxo954jo9GI77//3mydnubMmTPiD8Pf/vY3iwfQ8+fPd/rpEFeDRCLBHXfcAaD7P9fOzs6IiorC6tWrsWTJEgCXLqnk5eV1uc7OfIdbfkau5nHqSll7FsV0/6TpzOP1pLi4uN3LfwcOHBC3qeU+v+WWW8RLph29b3v37hX/vpL3rbS0FMClDgvt3Y/a3hNZuuM351ocS5iQtSMgIED8u703e/369dciHPFG7Pr6+nbLRUVFAbj0QW75pbicKdtvuY61xowZI/7d2RsXTW0JgoAPPvjAYrnMzEyLp3wdHBzw4IMPAgC2b99+TR6/01k+Pj4YMWIEACArK6tbbqj+8MMPLe6TX3/9Fdu3bwdw6dE2Xb2E0/L9WbNmjcVymzZtgsFgMFunp2n5o9Pemez333+/23sTd9XDDz8M4NKlmm3btl2VNq7k+9tSZ77Dl39GrsVxqiusPc6a3ieDwdDu96QnOnPmjNhLvS2rV68W/265zx0dHXHvvfcCAPLz8/HLL79YrMP0vjk6Olp8tJ81TN/L9r6/p06dEnu9tqU7fnOuxbGECVk7QkJCxFOtb7/9dptf0I8//hjZ2dnXJB7TZYUff/yx3XKzZs0Ss/eZM2eitra2VZnt27dj1apVAC5dlmzZe+/48eNi12ZLTD/8gHniao24uDhxW15++eU2/5s4fPgwXnnllXbrSU1NhYODA5qbmzFu3Lh2Dw5NTU346KOP2i1zNSxYsADApSEwxo0b124v1fr6erzzzjuoq6uzWKa4uFg8u9FSY2MjnnzySfG/2lmzZnU5ZtNz9IBL90y09czKkydP4tlnnwVw6WzctGnTutze1eTj4yP2PFu/fn2b3+F9+/bhX//61zWOzLJnnnkG7u7uAC51wzedIbDkiy++wMGDB8XXph/b9u5fuZLv7+UsfYePHDkifof79OnT6l61Kz1OXS2mY9Px48fb3YdTpkwRh3149tlnUVRU1G69u3bt6vC4ei2lpKS0eXlOo9Hg3XffBXBpKKbL97larQZw6fmSiYmJrYaYAC4ldKbPWHx8fJcviQMQz6QePXoUu3fvbrX8jz/+wIQJE9q9gb47fnOuxbGE95C1w9HREX//+9+Rnp6OkpISjB49Gv/85z/Rv39/VFVVITs7G5mZmbjnnnva/KB0t3vuuQeFhYXYt28fXn31VTzwwAPiTeouLi7o168fgEunZ+fOnYslS5bgwIED+POf/4z58+dj6NChuHDhAnJzc/Hmm2+iqakJEokE//vf/8zaqaiowKhRoxAcHIy//vWvGDZsmFj3yZMnsXHjRvHhyEOGDOmw+/PlJBIJ3nrrLYwbNw5nz57FiBEjMH/+fERGRkIQBOzcuROvvfYaAODWW2/FsWPH2qxn8ODBWLp0KZKTk3H48GGEhIRg5syZGD16NHx9fVFXV4effvoJWq0WmzZtwqlTp3Do0CFxjJiuOHbsWJsPkL/c3XffjeDgYDz44IN45plnsHz5chQVFSEoKAhPPfWU+FDqCxcu4NixY/j666/x6aef4uzZs+2OkzNs2DDMnz8fxcXFmDx5MhQKBY4ePYo33nhDPMvw0EMPYezYsV3eRolEgnfffRcPPfQQamtrER4ejnnz5mHMmDFwcHDA7t278eqrr4q9zJYuXdpuV3Jbsre3x8SJE/HOO+/g4MGD+Mtf/oKUlBTcdtttMBgM+PLLL7FixQq4u7ujb9++1+z2g/b4+vpi7dq1GDduHE6dOoVhw4Zh6tSpeOCBB+Dn5wej0YhffvkFe/fuxaZNm3D8+HHk5uaKwwfU1tbi4YcfxsCBAxEfH4/hw4djwIABcHR0xKlTp5CbmyuevejXr98VfVZuvfVWVFdXm32HgUvj4L366qviGdS33nqrVceDKz1OXS333HOP2Ds1JSUFTzzxhHh7hJOTEwYMGADg0mXXjz/+GJGRkTh//jxGjx6Nxx57DHFxcQgICEBzczNOnToFnU6HnJwcHDp0CG+99ZZ4hsmW7rrrLhw+fBihoaFITU3F3Xffjfr6enz55ZdYtmwZGhsb4ejoKPbMbSk2NhZ/+9vfkJ2dje3bt2PEiBFISUlBYGAgzp49iw0bNohn2Ly8vPDGG29cUayTJk3CW2+9hebmZsTGxmLevHn4y1/+AmdnZ+h0OixbtgxHjx5FeHi4xcv83fGbc02OJV0aivY60R0jeF+4cMHs0UqXT5GRkUJJSYlVI/W39WDaljp6MsAvv/wieHl5tRlHWw8Xb/kMxbYmuVwubNu2rVU7lz+OxNIUGBjY6hmanbFkyRKLD9J1dXUV8vLyrBo1+9133xVcXV07jFcikXT42Iu2tByp39qp5QOVm5ubhZdeesnig3xbTm5ubsIff/xh1v7lDxcfOnSoxfXDw8OF2traNrfD2hHITTIzM7vt4eLt6Wxcl2v5eV24cGGr5TU1NW0+vNg0eXl5CRqNpt04WrZRWFhoMRZrn+7x4osviuUs+fzzzy1+31tO9vb2QkFBgbietZ/XPn36CPv377fYfnta7qu8vDyL3z97e/t2Ryu/kuOUIFj/vnTGuXPnhFtuuaXNWNo6hmu1WvFRVR1Na9eubbW+Nd+Tjp4GY9LR/mj5tJf33nvP4jFJIpEI69evt9hOdz5cvL3viclLL73Ubltz5861qs4r/c3pjmNJe3jJsgOurq4oKCjAK6+8gsGDB8PFxQUeHh4ICwvD22+/ja+++uqaDaXQr18/7N27F4mJibj11lvbHdzT3t4e77zzDoqKijBx4kT0798fUqkUHh4eGDJkCJ5//nkcPXpUHNm9pZEjR2Lnzp1ITU3FqFGjcOutt4rdi319fREdHY2VK1eiuLj4ii53PPvss9i1axfi4+OhUCgglUoxYMAATJ8+Hfv370dsbKxV9Tz55JM4fvw4XnrpJYSHh6N3795wdHSEm5sbbr/9diQkJGDlypX49ddfceutt3Y53q6ys7NDWloafvjhB/zzn//EsGHD4OXlBQcHB8hkMgQHB2PixIlYu3YtTp061W6P1V69emH37t1IT0/HkCFDIJPJ4O7ujrCwMLz11lvQaDRmnVGuxJQpU1BWVoZnnnkGQUFBcHNzg4uLC/70pz/hySefxPfff4/U1NRuaetKtLyhuq0xmuRyOb755hu8/PLLGDx4MJydneHu7o6goCA8++yzOHDggDiSek/y0EMP4cSJE1i6dKl41tfJyQkuLi4ICAjA2LFj8cYbb+Cnn37CqFGjxPUGDBiAvXv3YuHChYiOjsagQYPg6ekJR0dH9O7dGxEREViyZAnKysrEp4NcidjYWOzfvx/Tpk3DgAEDIJFIoFAokJCQgF27dmHu3LkW172S49TV4u7ujt27d4uf+47G0RsxYgSOHj2KlStXIjY2Fn379oVEIoGzszP8/f0RHR2NV155BWVlZZg8efI12oqOzZgxA19//TUeffRRMeZ+/fph8uTJ+P7779t90oSzszM+/fRTfP7554iPjxfX79WrF4YPH4709HSUl5d322DraWlp+OKLLxAdHY1evXpBIpHAz88P8fHx2L59uzjwbkeu9Dfnah9L7ATBhoPuEBFdoY0bN4o/Hu+99x5mzJhh44hufJGRkdBoNLj33nvbfSwO9SwDBw7Ezz//jClTplh16wVdWzxDRkTXtZY3vXf0mCYiop6KCRkRXbfq6+vFYWc8PDwwbNgwG0dERNQ17GVJRNeV33//Hb/88gt++uknLF26VOwRNWPGjHbvqyQi6smYkBHRdeXDDz9EcnKy2bwRI0bgpZdeslFERERXjgkZEV137OzsIJfLERQUhEcffRSzZs2CVCq1dVhERF3GXpZERERENsab+omIiIhsjAkZERERkY0xISMiIiKyMSZkRERERDbGhIyIiIjIxpiQEREREdkYEzIiIiIiG2NCRkRERGRjTMiIiIiIbIwJGREREZGNMSEjIiIisjEmZEREREQ2xoSMiIiIyMaYkBERERHZGBMyIiIiIhtjQkZERERkY0zIiIiIiGzM0dYB3Miam5tRWVkJmUwGOzs7W4dDREREVhAEAefOnUPfvn1hb39tzl0xIbuKKisr4e/vb+swiIiIqAtOnjwJPz+/a9IWE7KrSCaTAbj0hnp4eNg4GiIiIrJGbW0t/P39xd/xa4EJ2VVkukxZ8EMDXN3rbRwNEVHPMu5uH1uHQNSua3m7EW/qJyIiIrIxJmRERERENsaEjIiIiMjGbJqQpaenIywsDDKZDAqFAnFxcSgvLzcrU1dXB7VaDW9vb7i7uyMhIQFVVVVmZSoqKhAbGwtXV1coFArMmzcPjY2N4vJdu3YhPDwc3t7ecHFxQWBgIJYtW9ZhfAcPHsTIkSPh7OwMf39/LF68uHs2nIiIiKgFmyZkGo0GarUae/bsQX5+PoxGI6Kjo3HhwgWxTHJyMnJzc5GdnQ2NRoPKykrEx8eLy5uamhAbG4uGhgbs3r0ba9euRWZmJtLS0sQybm5uSEpKQlFREY4cOYIFCxZgwYIFePfddy3GVltbi+joaAwYMAA6nQ5LlizBwoUL212HiIiIqCvsBEEQbB2ESXV1NRQKBTQaDSIiImAwGODj44OsrCyMGzcOAFBWVoagoCBotVqMGDECW7ZswdixY1FZWQlfX18AwMqVKzF//nxUV1dDIpG02VZ8fDzc3Nzw4Ycftrk8IyMDL7zwAvR6vVjHc889h82bN6OsrKzNderr61Ff/3+9KU3dZtfu+BGu7teu6ywR0fWAvSypp6qtrYVcLofBYLhmw1b1qHvIDAYDAMDLywsAoNPpYDQaERUVJZYJDAxE//79odVqAQBarRaDBw8WkzEAiImJQW1tLUpLS9ts5/vvv8fu3btx7733WoxFq9UiIiLCLKGLiYlBeXk5zp492+Y66enpkMvl4sRBYYmIiMgaPSYha25uxpw5cxAeHo6QkBAAEM9OeXp6mpX19fWFXq8Xy7RMxkzLTcta8vPzg1QqxbBhw6BWqzFjxgyL8XSmXpPU1FQYDAZxOnnyZAdbTURERNSDBoZVq9UoKSnBrl27rlobX3/9Nc6fP489e/bgueeew6233orHH3+82+qXSqWQSqXdVh8RERHdHHpEQpaUlIS8vDwUFRWZPTNKqVSioaEBNTU1ZmfJqqqqoFQqxTJ79+41q8/UC9NUxiQgIAAAMHjwYFRVVWHhwoUWEzKlUtmqN6eleomIiIiuhE0vWQqCgKSkJOTk5KCgoEBMmExCQ0Ph5OSEHTt2iPPKy8tRUVEBlUoFAFCpVDh06BBOnz4tlsnPz4eHhweCg4Mttt3c3Gx2A/7lVCoVioqKYDQazeodNGgQevXq1eltJSIiIrLEpgmZWq3GunXrkJWVBZlMBr1eD71ej4sXLwIA5HI5EhMTkZKSgsLCQuh0OkybNg0qlQojRowAAERHRyM4OBiTJk3CgQMHsG3bNixYsABqtVq8fPjOO+8gNzcXR48exdGjR7Fq1SosXboUTzzxhBjL22+/jTFjxoivJ0yYAIlEgsTERJSWlmLjxo1Yvnw5UlJSruEeIiIiopuBTS9ZZmRkAAAiIyPN5q9ZswZTp04FACxbtgz29vZISEhAfX09YmJisGLFCrGsg4MD8vLyMGvWLKhUKri5uWHKlClYtGiRWKa5uRmpqak4ceIEHB0d8ac//QmvvfYa/v73v4tlfvvtN/z444/ia7lcju3bt0OtViM0NBS9e/dGWloaZs6ceRX2BBEREd3MetQ4ZDca0zgmHIeMiKg1jkNGPZUtxiHrETf13+jihvW+Zm8oERERXX96zDhkRERERDcrJmRERERENsZLltdATf5KNLu52DoMIiK6QXne/7StQ6ArxDNkRERERDbGhIyIiIjIxpiQEREREdmYTROy9PR0hIWFQSaTQaFQIC4uDuXl5WZl6urqoFar4e3tDXd3dyQkJLR6xmRFRQViY2Ph6uoKhUKBefPmobGxsc02v/nmGzg6OmLIkCEdxnfw4EGMHDkSzs7O8Pf3x+LFi7u8rURERESW2DQh02g0UKvV2LNnD/Lz82E0GhEdHY0LFy6IZZKTk5Gbm4vs7GxoNBpUVlYiPj5eXN7U1ITY2Fg0NDRg9+7dWLt2LTIzM5GWltaqvZqaGkyePNnsEUmW1NbWIjo6GgMGDIBOp8OSJUuwcOFCvPvuu92z8URERET/X48aqb+6uhoKhQIajQYREREwGAzw8fFBVlYWxo0bBwAoKytDUFAQtFotRowYgS1btmDs2LGorKyEr68vAGDlypWYP38+qqurIZFIxPofe+wx3HbbbXBwcMDmzZtRXFxsMZaMjAy88MIL0Ov1Yh3PPfccNm/ejLKyMqu2xzTS78+bXoMHe1kSEdFVwl6W3csWI/X3qHvIDAYDAMDLywsAoNPpYDQaERUVJZYJDAxE//79odVqAQBarRaDBw8WkzEAiImJQW1tLUpLS8V5a9aswfHjx/Hiiy9aFYtWq0VERIRZQhcTE4Py8nKcPXu2zXXq6+tRW1trNhERERF1pMckZM3NzZgzZw7Cw8MREhICAOLZKU9PT7Oyvr6+0Ov1YpmWyZhpuWkZABw9ehTPPfcc1q1bB0dH64Zes6bey6Wnp0Mul4uTv7+/VW0RERHRza3HJGRqtRolJSXYsGFDt9bb1NSECRMm4KWXXsLtt9/erXVfLjU1FQaDQZxOnjx5VdsjIiKiG0OPGKk/KSkJeXl5KCoqgp+fnzhfqVSioaEBNTU1ZmfJqqqqoFQqxTJ79+41q8/UC1OpVOLcuXPYv38/vv/+eyQlJQG4dDZOEAQ4Ojpi+/btGD16dKuYlEplq96cLetti1QqhVQq7eTWExER0c3OpmfIBEFAUlIScnJyUFBQgICAALPloaGhcHJywo4dO8R55eXlqKiogEqlAgCoVCocOnQIp0+fFsvk5+fDw8MDwcHB8PDwwKFDh1BcXCxOTz31FAYNGoTi4mIMHz68zdhUKhWKiopgNBrN6h00aBB69erVnbuBiIiIbnI2TcjUajXWrVuHrKwsyGQy6PV66PV6XLx4EQAgl8uRmJiIlJQUFBYWQqfTYdq0aVCpVBgxYgQAIDo6GsHBwZg0aRIOHDiAbdu2YcGCBVCr1ZBKpbC3t0dISIjZpFAo4OzsjJCQELi5uQEA3n77bbPhMCZMmACJRILExESUlpZi48aNWL58OVJSUq79jiIiIqIbmk0vWWZkZAAAIiMjzeavWbMGU6dOBQAsW7YM9vb2SEhIQH19PWJiYrBixQqxrIODA/Ly8jBr1iyoVCq4ublhypQpWLRoUadi+e233/Djjz+Kr+VyObZv3w61Wo3Q0FD07t0baWlpmDlzZtc2loiIiMiCHjUO2Y2G45AREdG1wHHIupctxiHrETf13+g873vqmr2hREREdP3pMcNeEBEREd2smJARERER2RgTMiIiIiIb4z1k18DqHzfBxd3V1mEQERHdMP5+22O2DqFb8QwZERERkY0xISMiIiKyMSZkRERERDZm04QsPT0dYWFhkMlkUCgUiIuLQ3l5uVmZuro6qNVqeHt7w93dHQkJCa0e+l1RUYHY2Fi4urpCoVBg3rx5aGxsFJfv3LkTdnZ2rSa9Xt9ufAcPHsTIkSPh7OwMf39/LF68uPs2noiIiOj/s2lCptFooFarsWfPHuTn58NoNCI6OhoXLlwQyyQnJyM3NxfZ2dnQaDSorKxEfHy8uLypqQmxsbFoaGjA7t27sXbtWmRmZiItLa1Ve+Xl5Th16pQ4KRQKi7HV1tYiOjoaAwYMgE6nw5IlS7Bw4UK8++673bsTiIiI6KbXox6dVF1dDYVCAY1Gg4iICBgMBvj4+CArKwvjxo0DAJSVlSEoKAharRYjRozAli1bMHbsWFRWVsLX1xcAsHLlSsyfPx/V1dWQSCTYuXMnRo0ahbNnz8LT09OqWDIyMvDCCy9Ar9dDIpEAAJ577jls3rwZZWVlba5TX1+P+vp68XVtbS38/f2x7LtV7GVJRETUja5mL0tbPDqpR91DZjAYAABeXl4AAJ1OB6PRiKioKLFMYGAg+vfvD61WCwDQarUYPHiwmIwBQExMDGpra1FaWmpW/5AhQ9CnTx/cd999+Oabb9qNRavVIiIiQkzGTPWWl5fj7Nmzba6Tnp4OuVwuTv7+/p3YeiIiIrpZ9ZiErLm5GXPmzEF4eDhCQkIAQDw7dflZLV9fX/H+L71eb5aMmZablgFAnz59sHLlSnzyySf45JNP4O/vj8jISHz33XcW47Gm3sulpqbCYDCI08mTJ63ceiIiIrqZ9ZiBYdVqNUpKSrBr165ur3vQoEEYNGiQ+Pqee+7Bjz/+iGXLluHDDz/stnakUimkUmm31UdEREQ3hx5xhiwpKQl5eXkoLCyEn5+fOF+pVKKhoQE1NTVm5auqqqBUKsUyl/e6NL02lWnL3XffjWPHjllc3tV6iYiIiDrLpgmZIAhISkpCTk4OCgoKEBAQYLY8NDQUTk5O2LFjhzivvLwcFRUVUKlUAACVSoVDhw7h9OnTYpn8/Hx4eHggODjYYtvFxcXo06ePxeUqlQpFRUUwGo1m9Q4aNAi9evXq9LYSERERWWLThEytVmPdunXIysqCTCaDXq+HXq/HxYsXAQByuRyJiYlISUlBYWEhdDodpk2bBpVKhREjRgAAoqOjERwcjEmTJuHAgQPYtm0bFixYALVaLV4+/O9//4vPPvsMx44dQ0lJCebMmYOCggKo1WoxlrfffhtjxowRX0+YMAESiQSJiYkoLS3Fxo0bsXz5cqSkpFzDPUREREQ3A5veQ5aRkQEAiIyMNJu/Zs0aTJ06FQCwbNky2NvbIyEhAfX19YiJicGKFSvEsg4ODsjLy8OsWbOgUqng5uaGKVOmYNGiRWKZhoYGzJ07F7/++itcXV1x55134quvvsKoUaPEMr/99ht+/PFH8bVcLsf27duhVqsRGhqK3r17Iy0tDTNnzrwKe4KIiIhuZj1qHLIbjWkcE45DRkRE1L1utHHIekwvyxvZ9D+Nu2ZvKBEREV1/ekQvSyIiIqKbGRMyIiIiIhvjJctr4PzmT2DvynvIiIioa9zHjbd1CHSV8QwZERERkY0xISMiIiKyMSZkRERERDZm04QsPT0dYWFhkMlkUCgUiIuLQ3l5uVmZuro6qNVqeHt7w93dHQkJCa2eMVlRUYHY2Fi4urpCoVBg3rx5aGxsNCtTX1+PF154AQMGDIBUKsXAgQOxevXqduOzpl4iIiKiK2XTm/o1Gg3UajXCwsLQ2NiI559/HtHR0Th8+DDc3NwAAMnJyfjiiy+QnZ0NuVyOpKQkxMfH45tvvgEANDU1ITY2FkqlErt378apU6cwefJkODk54T//+Y/Y1qOPPoqqqiqsWrUKt956K06dOoXm5maLsVlbLxEREdGV6lEj9VdXV0OhUECj0SAiIgIGgwE+Pj7IysrCuHHjAABlZWUICgqCVqvFiBEjsGXLFowdOxaVlZXw9fUFAKxcuRLz589HdXU1JBIJtm7disceewzHjx+Hl5eXVbFYU29HTCP9/rp2NTzYy5KIiLqIvSyvLVuM1N+j7iEzGAwAICZNOp0ORqMRUVFRYpnAwED0798fWq0WAKDVajF48GAxaQKAmJgY1NbWorS0FADw+eefY9iwYVi8eDH69euH22+/Hc8++6z4EPO2WFPv5err61FbW2s2EREREXWkx4xD1tzcjDlz5iA8PBwhISEAAL1eD4lEAk9PT7Oyvr6+0Ov1YpmWSZNpuWkZABw/fhy7du2Cs7MzcnJy8Ntvv+Ef//gHfv/9d6xZs6bNeKyp93Lp6el46aWXOrHVRERERD3oDJlarUZJSQk2bNjQ7XU3NzfDzs4OH330Ee6++248+OCDeOONN7B27dp2z5J1VmpqKgwGgzidPHmy2+omIiKiG1ePSMiSkpKQl5eHwsJC+Pn5ifOVSiUaGhpQU1NjVr6qqgpKpVIsc3mvS9NrU5k+ffqgX79+kMvlYpmgoCAIgoBffvmlzZisqfdyUqkUHh4eZhMRERFRR2yakAmCgKSkJOTk5KCgoAABAQFmy0NDQ+Hk5IQdO3aI88rLy1FRUQGVSgUAUKlUOHToEE6fPi2Wyc/Ph4eHB4KDgwEA4eHhqKysxPnz58UyP/zwA+zt7c0SwJasqZeIiIioO9g0IVOr1Vi3bh2ysrIgk8mg1+uh1+vFy4hyuRyJiYlISUlBYWEhdDodpk2bBpVKhREjRgAAoqOjERwcjEmTJuHAgQPYtm0bFixYALVaDalUCgCYMGECvL29MW3aNBw+fBhFRUWYN28epk+fDhcXFwBATk4OAgMDxdisqZeIiIioO9g0IcvIyIDBYEBkZCT69OkjThs3bhTLLFu2DGPHjkVCQgIiIiKgVCrx6aefissdHByQl5cHBwcHqFQqPPHEE5g8eTIWLVoklnF3d0d+fj5qamowbNgwTJw4EQ899BDefPNNsYzBYDAblNaaeomIiIi6Q48ah+xGw3HIiIioO3AcsmvLFuOQ9ZhhL25k7nEJcOcN/kRERGRBj+hlSURERHQzY0JGREREZGNMyIiIiIhsjPeQXQOHtXVwd+v4YeRERETXi5C/ONs6hBsKz5ARERER2RgTMiIiIiIbY0JGREREZGM2TcjS09MRFhYGmUwGhUKBuLg4s9HyAaCurg5qtRre3t5wd3dHQkJCq4d+V1RUIDY2Fq6urlAoFJg3bx4aGxvF5VOnToWdnV2r6Y477mg3voMHD2LkyJFwdnaGv78/Fi9e3H0bT0RERPT/2TQh02g0UKvV2LNnD/Lz82E0GhEdHY0LFy6IZZKTk5Gbm4vs7GxoNBpUVlYiPj5eXN7U1ITY2Fg0NDRg9+7dWLt2LTIzM5GWliaWWb58OU6dOiVOJ0+ehJeXF/72t79ZjK22thbR0dEYMGAAdDodlixZgoULF+Ldd9+9OjuDiIiIblo96tFJ1dXVUCgU0Gg0iIiIgMFggI+PD7KysjBu3DgAQFlZGYKCgqDVajFixAhs2bIFY8eORWVlJXx9fQEAK1euxPz581FdXQ2JpHXvxs2bNyM+Ph4nTpzAgAED2owlIyMDL7zwAvR6vVjHc889h82bN6OsrKzNderr61FfXy++rq2thb+/P7Rbq+DuxpH6iYjoxnEj97K0xaOTetQ9ZAaDAQDg5eUFANDpdDAajYiKihLLBAYGon///tBqtQAArVaLwYMHi8kYAMTExKC2thalpaVttrNq1SpERUVZTMZM9UZERJgldDExMSgvL8fZs2fbXCc9PR1yuVyc/P39rdxyIiIiupn1mISsubkZc+bMQXh4OEJCQgBAPDvl6elpVtbX1xd6vV4s0zIZMy03LbtcZWUltmzZghkzZrQbT2frBYDU1FQYDAZxOnnyZLttEBEREQE9aGBYtVqNkpIS7Nq166q2s3btWnh6eiIuLq7b65ZKpZBKpd1eLxEREd3YesQZsqSkJOTl5aGwsBB+fn7ifKVSiYaGBtTU1JiVr6qqglKpFMtc3uvS9NpUxkQQBKxevRqTJk1q896yljpTLxEREdGVsGlCJggCkpKSkJOTg4KCAgQEBJgtDw0NhZOTE3bs2CHOKy8vR0VFBVQqFQBApVLh0KFDOH36tFgmPz8fHh4eCA4ONqtPo9Hg2LFjSExM7DA2lUqFoqIiGI1Gs3oHDRqEXr16dWl7iYiIiNpi04RMrVZj3bp1yMrKgkwmg16vh16vx8WLFwEAcrkciYmJSElJQWFhIXQ6HaZNmwaVSoURI0YAAKKjoxEcHIxJkybhwIED2LZtGxYsWAC1Wt3q8uGqVaswfPhw8R61lt5++22MGTNGfD1hwgRIJBIkJiaitLQUGzduxPLly5GSknIV9wgRERHdjGx6D1lGRgYAIDIy0mz+mjVrMHXqVADAsmXLYG9vj4SEBNTX1yMmJgYrVqwQyzo4OCAvLw+zZs2CSqWCm5sbpkyZgkWLFpnVaTAY8Mknn2D58uVtxvLbb7/hxx9/FF/L5XJs374darUaoaGh6N27N9LS0jBz5sxu2HIiIiKi/9OjxiG70ZjGMeE4ZEREdKPhOGTdq8f0sryRBauc4eFx435wiYiI6Mr0iF6WRERERDczJmRERERENsZLltdAeeFGuLu52DoMIiKiLgmKesLWIdzweIaMiIiIyMaYkBERERHZGBMyIiIiIhuzaUKWnp6OsLAwyGQyKBQKxMXFoby83KxMXV0d1Go1vL294e7ujoSEhFbPmKyoqEBsbCxcXV2hUCgwb948NDY2mpX56KOPcNddd8HV1RV9+vTB9OnT8fvvv7cbnzX1EhEREV0pmyZkGo0GarUae/bsQX5+PoxGI6Kjo3HhwgWxTHJyMnJzc5GdnQ2NRoPKykrEx8eLy5uamhAbG4uGhgbs3r0ba9euRWZmJtLS0sQy33zzDSZPniw+Bik7Oxt79+7Fk08+aTE2a+olIiIi6g49aqT+6upqKBQKaDQaREREwGAwwMfHB1lZWRg3bhwAoKysDEFBQdBqtRgxYgS2bNmCsWPHorKyEr6+vgCAlStXYv78+aiuroZEIsHSpUuRkZFh9mikt956C6+99hp++eWXNmOxpt6OmEb63bv5XfayJCKi69bN1svSFiP196h7yAwGAwDAy8sLAKDT6WA0GhEVFSWWCQwMRP/+/aHVagEAWq0WgwcPFpMmAIiJiUFtbS1KS0sBACqVCidPnsSXX34JQRBQVVWFTZs24cEHH7QYizX1Xq6+vh61tbVmExEREVFHekxC1tzcjDlz5iA8PBwhISEAAL1eD4lEAk9PT7Oyvr6+0Ov1YpmWSZNpuWkZAISHh+Ojjz7C+PHjIZFIoFQqIZfL8c4771iMx5p6L5eeng65XC5O/v7+Vm49ERER3cx6TEKmVqtRUlKCDRs2dHvdhw8fxjPPPIO0tDTodDps3boVP/30E5566qlubSc1NRUGg0GcTp482a31ExER0Y2pR4zUn5SUhLy8PBQVFcHPz0+cr1Qq0dDQgJqaGrOzZFVVVVAqlWKZvXv3mtVn6oVpKpOeno7w8HDMmzcPAHDnnXfCzc0NI0eOxL///W/06dOnVUzW1Hs5qVQKqVTamU0nIiIisu0ZMkEQkJSUhJycHBQUFCAgIMBseWhoKJycnLBjxw5xXnl5OSoqKqBSqQBcuj/s0KFDOH36tFgmPz8fHh4eCA4OBgD88ccfsLc331QHBwcxhrZYUy8RERFRd7BpQqZWq7Fu3TpkZWVBJpNBr9dDr9fj4sWLAAC5XI7ExESkpKSgsLAQOp0O06ZNg0qlwogRIwAA0dHRCA4OxqRJk3DgwAFs27YNCxYsgFqtFs9WPfTQQ/j000+RkZGB48eP45tvvsHs2bNx9913o2/fvgCAnJwcBAYGirFZUy8RERFRd7DpJcuMjAwAQGRkpNn8NWvWYOrUqQCAZcuWwd7eHgkJCaivr0dMTAxWrFghlnVwcEBeXh5mzZoFlUoFNzc3TJkyBYsWLRLLTJ06FefOncPbb7+NuXPnwtPTE6NHj8Zrr70mljEYDGaD0lpTLxEREVF36FHjkN1oOA4ZERHdCDgO2dXXI27qv9ENGjX+mr2hREREdP3pMcNeEBEREd2smJARERER2RgTMiIiIiIb4z1k10DtjgrATWbrMIiIiLqdR/QAW4dwQ+AZMiIiIiIbY0JGREREZGNMyIiIiIhszKYJWXp6OsLCwiCTyaBQKBAXF2c2Wj4A1NXVQa1Ww9vbG+7u7khISBAf8m1SUVGB2NhYuLq6QqFQYN68eWhsbDQr88477yAoKAguLi4YNGgQPvjggw7js6ZeIiIioitl05v6NRoN1Go1wsLC0NjYiOeffx7R0dE4fPgw3NzcAADJycn44osvkJ2dDblcjqSkJMTHx+Obb74BADQ1NSE2NhZKpRK7d+/GqVOnMHnyZDg5OeE///kPgEuPaEpNTcV7772HsLAw7N27F08++SR69eqFhx56qM3YrKmXiIiIqDv0qEcnVVdXQ6FQQKPRICIiAgaDAT4+PsjKysK4ceMAAGVlZQgKCoJWq8WIESOwZcsWjB07FpWVlfD19QUArFy5EvPnz0d1dTUkEgnuuecehIeHY8mSJWJbc+fOxbfffotdu3a1GYs19V6uvr4e9fX14uva2lr4+/vj5KeH4MFelkREdAO6EXtZ2uLRST3qHjKDwQAA8PLyAgDodDoYjUZERUWJZQIDA9G/f39otVoAgFarxeDBg8WkCQBiYmJQW1uL0tJSAJcSJWdnZ7O2XFxcsHfvXhiNxjZjsabey6Wnp0Mul4uTv79/Z3cBERER3YR6TELW3NyMOXPmIDw8HCEhIQAAvV4PiUQCT09Ps7K+vr7Q6/VimZZJk2m5aRlwKZF6//33odPpIAgC9u/fj/fffx9GoxG//fZbm/FYU+/lUlNTYTAYxOnkyZOd2ANERER0s+oxA8Oq1WqUlJRYvIR4Jf71r39Br9djxIgREAQBvr6+mDJlChYvXgx7++7LSaVSKaRSabfVR0RERDeHHnGGLCkpCXl5eSgsLISfn584X6lUoqGhATU1NWblq6qqoFQqxTKX97o0vTaVcXFxwerVq/HHH3/gp59+QkVFBQYOHAiZTAYfH582Y7KmXiIiIqLuYNOETBAEJCUlIScnBwUFBQgICDBbHhoaCicnJ+zYsUOcV15ejoqKCqhUKgCASqXCoUOHcPr0abFMfn4+PDw8EBwcbFafk5MT/Pz84ODggA0bNmDs2LEWz5B1pl4iIiKiK2HThEytVmPdunXIysqCTCaDXq+HXq/HxYsXAQByuRyJiYlISUlBYWEhdDodpk2bBpVKhREjRgAAoqOjERwcjEmTJuHAgQPYtm0bFixYALVaLV4+/OGHH7Bu3TocPXoUe/fuxWOPPYaSkhKz4StycnIQGBgovramXiIiIqLuYNN7yDIyMgAAkZGRZvPXrFmDqVOnAgCWLVsGe3t7JCQkoL6+HjExMVixYoVY1sHBAXl5eZg1axZUKhXc3NwwZcoULFq0SCzT1NSE119/HeXl5XBycsKoUaOwe/duDBw4UCxjMBjMBqW1pl4iIiKi7tCjxiG70ZjGMeE4ZEREdKPiOGTdo8f0sryReYzpf83eUCIiIrr+9IhelkREREQ3MyZkRERERDbGS5bXwMGDB+Hu7m7rMIiI6DoxZMgQW4dA1xjPkBERERHZGBMyIiIiIhtjQkZERERkYzZNyNLT0xEWFgaZTAaFQoG4uDizwVkBoK6uDmq1Gt7e3nB3d0dCQkKrZ0zOnj0boaGhkEqlFq+7Hzx4ECNHjoSzszP8/f2xePHiDuOrqKhAbGwsXF1doVAoMG/ePDQ2NnZ5e4mIiIjaYtOETKPRQK1WY8+ePcjPz4fRaER0dDQuXLgglklOTkZubi6ys7Oh0WhQWVmJ+Pj4VnVNnz4d48ePb7Od2tpaREdHY8CAAdDpdFiyZAkWLlyId99912JsTU1NiI2NRUNDA3bv3o21a9ciMzMTaWlpV77hRERERC30qJH6q6uroVAooNFoEBERAYPBAB8fH2RlZWHcuHEAgLKyMgQFBUGr1YrPszRZuHAhNm/ejOLiYrP5GRkZeOGFF6DX6yGRSAAAzz33HDZv3oyysrI2Y9myZQvGjh2LyspK+Pr6AgBWrlyJ+fPno7q6WqynPaaRfr/++mv2siQiIquxl6Vt2WKk/h51D5nBYAAAeHl5AQB0Oh2MRiOioqLEMoGBgejfvz+0Wq3V9Wq1WkRERJglUTExMSgvL8fZs2ctrjN48GAxGTOtU1tbi9LS0jbXqa+vR21trdlERERE1JEek5A1Nzdjzpw5CA8PR0hICACIZ7Q8PT3Nyvr6+kKv11tdt16vN0usTHWYlnXXOunp6ZDL5eLk7+9vdYxERER08+oxCZlarUZJSQk2bNhg61C6LDU1FQaDQZxOnjxp65CIiIjoOtAjRupPSkpCXl4eioqK4OfnJ85XKpVoaGhATU2N2VmyqqoqKJVKq+tXKpWtemaaXluqR6lUYu/evZ1aRyqVQiqVWh0XEREREWDjM2SCICApKQk5OTkoKChAQECA2fLQ0FA4OTlhx44d4rzy8nJUVFRApVJZ3Y5KpUJRURGMRqM4Lz8/H4MGDUKvXr0srnPo0CGcPn3abB0PDw8EBwdb3TYRERFRR2yakKnVaqxbtw5ZWVmQyWTQ6/XQ6/W4ePEiAEAulyMxMREpKSkoLCyETqfDtGnToFKpzHpYHjt2DMXFxeK6xcXFKC4uRkNDAwBgwoQJkEgkSExMRGlpKTZu3Ijly5cjJSVFrCMnJweBgYHi6+joaAQHB2PSpEk4cOAAtm3bhgULFkCtVvMsGBEREXUrm16yzMjIAABERkaazV+zZg2mTp0KAFi2bBns7e2RkJCA+vp6xMTEYMWKFWblZ8yYAY1GI74eOnQoAODEiRMYOHAg5HI5tm/fDrVajdDQUPTu3RtpaWmYOXOmuI7BYDAblNbBwQF5eXmYNWsWVCoV3NzcMGXKFCxatKg7dwERERFRzxqH7EbDcciIiKgrOA6ZbdliHLIecVP/je7OO++8Zm8oERERXX96zLAXRERERDcrJmRERERENsaEjIiIiMjGeA/ZNXD+fB7s7V1tHQYREVGb3N3jbB3CTY9nyIiIiIhsjAkZERERkY0xISMiIiKyMZsmZOnp6QgLC4NMJoNCoUBcXJzZaPkAUFdXB7VaDW9vb7i7uyMhIaHVg8Jnz56N0NBQSKXSNgfTq6urw9SpUzF48GA4OjoiLi7OqvjOnDmDiRMnwsPDA56enkhMTMT58+e7urlEREREbbJpQqbRaKBWq7Fnzx7k5+fDaDQiOjoaFy5cEMskJycjNzcX2dnZ0Gg0qKysRHx8fKu6pk+fjvHjx7fZTlNTE1xcXDB79mxERUVZHd/EiRNRWlqK/Px85OXloaioyOxxS0RERETdoUc9Oqm6uhoKhQIajQYREREwGAzw8fFBVlYWxo0bBwAoKytDUFAQtFqt2QPGAWDhwoXYvHkziouLLbYxdepU1NTUYPPmze3GcuTIEQQHB2Pfvn0YNmwYAGDr1q148MEH8csvv6Bv376t1qmvr0d9fb34ura2Fv7+/vj114/g4cFelkRE1DOxl6U5Wzw6qUfdQ2YwGAAAXl5eAACdTgej0Wh2ViswMBD9+/eHVqu9qrFotVp4enqKyRgAREVFwd7eHt9++22b66Snp0Mul4uTv7//VY2RiIiIbgw9JiFrbm7GnDlzEB4ejpCQEACAXq+HRCKBp6enWVlfX1/o9fqrGo9er4dCoTCb5+joCC8vL4ttp6amwmAwiNPJkyevaoxERER0Y+gxA8Oq1WqUlJRg165dtg6ly6RSKaRSqa3DICIioutMpxKy6dOnd1jGzs4Oq1at6lQQSUlJ4k3zfn5+4nylUomGhgbU1NSYnSWrqqqCUqnsVBudpVQqcfr0abN5jY2NOHPmzFVvm4iIiG4unbpkefbsWYvTb7/9hg0bNiAzM9Pq+gRBQFJSEnJyclBQUICAgACz5aGhoXBycsKOHTvEeeXl5aioqIBKpepM6J2mUqlQU1MDnU4nzisoKEBzczOGDx9+VdsmIiKim0unzpDl5OS0Of+zzz7D888/D6lUirS0NKvrU6vVyMrKwmeffQaZTCbemyWXy+Hi4gK5XI7ExESkpKTAy8sLHh4eePrpp6FSqcx6WB47dgznz5+HXq/HxYsXxV6WwcHBkEgkAIDDhw+joaEBZ86cwblz58QypnHL9u7di8mTJ2PHjh3o168fgoKCcP/99+PJJ5/EypUrYTQakZSUhMcee6zNHpZEREREXXVFw1588803eO655/Ddd98hKSkJzz33HHr16mV943Z2bc5fs2YNpk6dCuDSoK5z587F+vXrUV9fj5iYGKxYscLssmFkZCQ0Gk2rek6cOIGBAwcCAAYOHIiff/65VRnT5u/cuROjRo0yW+fMmTNISkpCbm4u7O3tkZCQgDfffBPu7u5WbZ+p2yyHvSAiop6Mw16Ys8WwF11KyA4fPoz58+dj69atmDx5Ml566SWze7/oEiZkRER0PWBCZs4WCVmnLlmePHkSaWlpWLduHcaOHYuDBw8iKCjoasV2w3B3Hwt392vzhhIREdH1p1MJ2aBBg2BnZ4eUlBSEh4fj6NGjOHr0aKtyDz/8cLcFSERERHSj69QlS3v7jjtl2tnZoamp6YqCulHY4pQnERERXZkef8myubn5asVxQ9v1ezXcGupsHQYREfVA9/ZWdFyIbng95tFJRERERDerLiVk2dnZiI+PR0hICEJCQhAfH49NmzZ1d2xEREREN4VOJWTNzc0YP348xo8fj8OHD+PWW2/FrbfeitLSUowfPx6PPfYYrmBYMyIiIqKbUqcSsuXLl+Orr77C559/jrKyMmzevBmbN29GeXk5cnJykJ+fj+XLl1tdX3p6OsLCwiCTyaBQKBAXF4fy8nKzMnV1dVCr1fD29oa7uzsSEhJQVVVlVmb27NkIDQ2FVCoVR95vaefOnXjkkUfQp08fuLm5YciQIfjoo486jK+iogKxsbFwdXWFQqHAvHnz0NjYaPX2EREREVmjUwnZmjVrsGTJEowdO7bVsocffhiLFy/G6tWrra5Po9FArVZjz549yM/Ph9FoRHR0NC5cuCCWSU5ORm5uLrKzs6HRaFBZWYn4+PhWdU2fPh3jx49vs53du3fjzjvvxCeffIKDBw9i2rRpmDx5MvLy8izG1tTUhNjYWDQ0NGD37t1Yu3YtMjMzO/VoKCIiIiJrdGrYCxcXF5SXl6N///5tLv/5558RGBiIixcvdimY6upqKBQKaDQaREREwGAwwMfHB1lZWRg3bhwAoKysDEFBQdBqtWbPswSAhQsXYvPmzeJzKtsTGxsLX19fiwnkli1bMHbsWFRWVsLX1xcAsHLlSsyfPx/V1dXiMzLbY+o2+8XxY3CTyTosT0RENx/2sux5bDHsRafOkLm4uKCmpsbi8traWjg7O3c5GIPBAADw8vICAOh0OhiNRkRFRYllAgMD0b9/f2i12i63Y2rL1E5btFotBg8eLCZjABATE4Pa2lqUlpa2uU59fT1qa2vNJiIiIqKOdCohU6lUyMjIsLj8nXfegUql6lIgzc3NmDNnDsLDwxESEgIA0Ov1kEgk8PT0NCvr6+sLvV7fpXYA4OOPP8a+ffswbdo0i2X0er1ZMmZq17SsLenp6ZDL5eLk7+/f5RiJiIjo5tGpgWFfeOEFREZG4vfff8ezzz6LwMBACIKAI0eO4PXXX8dnn32GwsLCLgWiVqtRUlKCXbt2dWl9axUWFmLatGl47733cMcdd3Rr3ampqUhJSRFf19bWMikjIiKiDnUqIbvnnnuwceNGzJw5E5988onZsl69emH9+vUIDw/vdBBJSUnIy8tDUVER/Pz8xPlKpRINDQ2oqakxO0tWVVUFpVLZ6XY0Gg0eeughLFu2DJMnT263rFKpxN69e83mmXp3WmpbKpVCKpV2Oi4iIiK6uXUqIQOAv/71r4iJicG2bdvEB4vffvvtiI6Ohqura6fqEgQBTz/9NHJycrBz504EBASYLQ8NDYWTkxN27NiBhIQEAEB5eTkqKio6fWl0586dGDt2LF577TXMnDmzw/IqlQqvvPIKTp8+DYXi0g2X+fn58PDwQHBwcKfaJiIiImpPpxMyAHB1dcVf//rXK25crVYjKysLn332GWQymXhvllwuh4uLC+RyORITE5GSkgIvLy94eHjg6aefhkqlMutheezYMZw/fx56vR4XL14Ue1kGBwdDIpGgsLAQY8eOxTPPPIOEhASxHYlEIt7Yn5OTg9TUVJSVlQEAoqOjERwcjEmTJmHx4sXQ6/VYsGAB1Go1z4IRERFRt+rUTf1arbbV2F0ffPABAgICoFAoMHPmTNTX11tdX0ZGBgwGAyIjI9GnTx9x2rhxo1hm2bJlGDt2LBISEhAREQGlUolPP/3UrJ4ZM2Zg6NCh+N///ocffvgBQ4cOxdChQ1FZWQkAWLt2Lf744w+kp6ebtdNyPDODwWA2KK2DgwPy8vLg4OAAlUqFJ554ApMnT8aiRYs6s8uIiIiIOtSpccgeeOABREZGYv78+QCAQ4cO4c9//jOmTp2KoKAgLFmyBH//+9+xcOHCqxXvdYXjkBERUUc4DlnPY4txyDp1ybK4uBgvv/yy+HrDhg0YPnw43nvvPQCAv78/XnzxRSZkl/mLt881e0OJiIjo+tOpS5Znz541G5tLo9HggQceEF+HhYXh5MmT3RcdERER0U2gUwmZr68vTpw4AQBoaGjAd999Z3Zz/blz5+Dk5NS9ERIRERHd4DqVkD344IN47rnn8PXXXyM1NRWurq4YOXKkuPzgwYP405/+1O1BEhEREd3IOnUP2csvv4z4+Hjce++9cHd3x9q1a80esr169WpER0d3e5DXu837f4Oru/W9T4mIiCwZd7ePrUOgq6BTCVnv3r1RVFQEg8EAd3d3ODg4mC3Pzs6GjL0JiYiIiDqlU5csTeRyeatkTBAEfPvtt3j88ce7JTAiIiKim0WXErKWTpw4gX/961/o378//vrXv6Kurq474iIiIiK6aXQpIauvr8dHH32E0aNHY9CgQfjPf/6DlJQUnD59utVI/u1JT09HWFgYZDIZFAoF4uLizEbLB4C6ujqo1Wp4e3vD3d0dCQkJ4kO+TWbPno3Q0FBIpVIMGTKkVTvl5eUYNWoUfH194ezsjFtuuQULFiyA0WhsN76KigrExsbC1dUVCoUC8+bNQ2Njo9XbR0RERGSNTiVkOp0O//jHP6BUKvHf//4XcXFxOHnyJOzt7RETE9PpwU81Gg3UajX27NmD/Px8GI1GREdH48KFC2KZ5ORk5ObmIjs7GxqNBpWVlWaPPDKZPn06xo8f32Y7Tk5OmDx5MrZv347y8nL897//xXvvvYcXX3zRYmxNTU2IjY1FQ0MDdu/ejbVr1yIzMxNpaWmd2kYiIiKijnTq0UmOjo54+umn8dRTT2HQoEHifCcnJxw4cADBwcFXFEx1dTUUCgU0Gg0iIiJgMBjg4+ODrKwsjBs3DgBQVlaGoKAgaLVaszHQAGDhwoXYvHmz+HDx9qSkpGDfvn34+uuv21y+ZcsWjB07FpWVleJguCtXrsT8+fNRXV1t1rvUpL6+3uxZnrW1tfD398faHT/C1Z2dHYiI6Mqxl+XVZ4tHJ3XqDNmYMWOwatUqLFq0CFu3bkUncjmrGAwGAICXlxeAS2fkjEYjoqKixDKBgYHo378/tFptl9s5duwYtm7dinvvvddiGa1Wi8GDB5s9mSAmJga1tbUoLS1tc5309HTI5XJx8vf373KMREREdPPoVEK2bds2lJaWYtCgQZg1axb69OmDZ555BgBgZ2d3RYE0Nzdjzpw5CA8PR0hICABAr9dDIpHA09PTrKyvry/0en2n27jnnnvg7OyM2267DSNHjsSiRYssltXr9WbJmKld07K2pKamwmAwiBMfI0VERETW6PRN/f7+/khLS8OJEyfw4Ycforq6Go6OjnjkkUfw/PPP47vvvutSIGq1GiUlJdiwYUOX1rfGxo0b8d133yErKwtffPEFli5d2q31S6VSeHh4mE1EREREHenUwLCXu++++3Dffffh7NmzWLduHVavXo3XXnsNTU1NnaonKSkJeXl5KCoqgp+fnzhfqVSioaEBNTU1ZmfJqqqqoFQqOx2v6RJicHAwmpqaMHPmTMydO7fVmGqmtvfu3Ws2z9S7syttExEREVlyxeOQAUCvXr3w9NNP4/vvv8e+ffusXk8QBCQlJSEnJwcFBQUICAgwWx4aGgonJyfs2LFDnFdeXo6KigqoVKorirm5uRlGoxHNzc1tLlepVDh06BBOnz4tzsvPz4eHh8cVd14gIiIiaqlTCdnixYtx8eJF8fU333xj1qvw3LlzeP/9962uT61WY926dcjKyoJMJoNer4derxfbkMvlSExMREpKCgoLC6HT6TBt2jSoVCqzHpbHjh1DcXGxuG5xcTGKi4vR0NAAAPjoo4/w8ccf48iRIzh+/Dg+/vhjpKamYvz48XBycgIA5OTkIDAwUKwzOjoawcHBmDRpEg4cOIBt27ZhwYIFUKvVkEqlndltRERERO3q1LAXDg4OOHXqFBQKBQDAw8MDxcXFuOWWWwBcuqTXt29fqy9ZWuoIsGbNGkydOhXApYFh586di/Xr16O+vh4xMTFYsWKF2WXDyMhIaDSaVvWcOHECAwcOxMaNG7F48WL88MMPEAQBAwYMwBNPPIHk5GQ4OzsDADIzMzFt2jSznqM///wzZs2ahZ07d8LNzQ1TpkzBq6++CkdH6670mrrNctgLIiLqLhz24uqzxbAXnUrI7O3todfrxYRMJpPhwIEDXU7IbnRMyIiIqLsxIbv6bJGQXdFN/WSduGG92eOSiIiILOqWm/qJiIiIqOs6fYbs/fffh7u7OwCgsbERmZmZ6N27N4BLN/UTERERUed06h6ygQMHWjUi/4kTJ64oqBuF6Rr0z5teg4ebi63DISKiHs7z/qdtHQLhOriH7KeffrpKYRARERHdvDp1D5lWq0VeXp7ZvA8++AABAQFQKBSYOXOm2bhkRERERNSxTiVkL730EkpLS8XXhw4dQmJiIqKiovDcc88hNzcX6enp3R4kERER0Y2sUwnZgQMHMGbMGPH1hg0bMHz4cLz33ntISUnBm2++iY8//tjq+tLT0xEWFgaZTAaFQoG4uDiUl5eblamrq4NarYa3tzfc3d2RkJAgPlPSZPbs2QgNDYVUKsWQIUPabfPYsWOQyWRmz8a0pKKiArGxsXB1dYVCocC8efPQ2Nho9fYRERERWaNTCdnZs2fh6+srvtZoNHjggQfE12FhYTh58qTV9Wk0GqjVauzZswf5+fkwGo2Ijo7GhQsXxDLJycnIzc1FdnY2NBoNKisrER8f36qu6dOnY/z48e22ZzQa8fjjj2PkyJEdxtbU1ITY2Fg0NDRg9+7dWLt2LTIzM5GWlmb19hERERFZo1M39fv6+uLEiRPw9/dHQ0MDvvvuO7z00kvi8nPnzonPhrTG1q1bzV5nZmZCoVBAp9MhIiICBoMBq1atQlZWFkaPHg3g0mOVgoKCsGfPHvF5lm+++SYAoLq6GgcPHrTY3oIFCxAYGIgxY8Zg9+7d7ca2fft2HD58GF999RV8fX0xZMgQvPzyy5g/fz4WLlwIiURi9XYSERERtadTZ8gefPBBPPfcc/j666+RmpoKV1dXs7NNBw8exJ/+9KcuB2MwGAAAXl5eAACdTgej0YioqCixTGBgIPr37w+tVtupugsKCpCdnY133nnHqvJarRaDBw82OyMYExOD2tpas/voWqqvr0dtba3ZRERERNSRTiVkL7/8MhwdHXHvvffivffew3vvvWd2pmj16tWIjo7uUiDNzc2YM2cOwsPDERISAgDQ6/WQSCSt7vfy9fWFXq+3uu7ff/8dU6dORWZmptXjiej1erNkzNSuaVlb0tPTIZfLxcnf39/qGImIiOjm1alLlr1790ZRUREMBgPc3d3h4OBgtjw7O1scxb+z1Go1SkpKsGvXri6t354nn3wSEyZMQERERLfX3VJqaipSUlLE17W1tUzKiIiIqENdepalXC5vlYwBly41duXeqqSkJOTl5aGwsBB+fn7ifKVSiYaGBtTU1JiVr6qqglKptLr+goICLF26FI6OjnB0dERiYiIMBgMcHR2xevXqNtdRKpWtenOaXltqWyqVwsPDw2wiIiIi6ohNHy4uCAKSkpKQk5ODgoICBAQEmC0PDQ2Fk5MTduzYIc4rLy9HRUUFVCqV1e1otVoUFxeL06JFiyCTyVBcXIy//vWvba6jUqlw6NAhnD59WpyXn58PDw8PBAcHd3JLiYiIiCzr9MPFu5NarUZWVhY+++wzyGQy8d4suVwOFxcXyOVyJCYmIiUlBV5eXvDw8MDTTz8NlUol9rAELo0tdv78eej1ely8eBHFxcUAgODgYEgkEgQFBZm1u3//ftjb24v3qgFATk4OUlNTUVZWBgCIjo5GcHAwJk2ahMWLF0Ov12PBggVQq9WQSqVXec8QERHRzcSmCVlGRgYAIDIy0mz+mjVrMHXqVADAsmXLYG9vj4SEBNTX1yMmJgYrVqwwKz9jxgxoNBrx9dChQwFcesj5wIEDrYrFYDCYDUrr4OCAvLw8zJo1CyqVCm5ubpgyZQoWLVrUya0kIiIiap+dIAiCrYO4UZmeFv/zptfg4eZi63CIiKiH87z/aVuHQPi/32+DwXDN7ge36Rmym4XnfU/xBn8iIiKyyKY39RMREREREzIiIiIim2NCRkRERGRjvIfsGlj94ya4uLvaOgwiIrKBv9/2mK1DoOsAz5ARERER2RgTMiIiIiIbs2lClp6ejrCwMMhkMigUCsTFxZkNzgoAdXV1UKvV8Pb2hru7OxISElo9Y3L27NkIDQ2FVCrFkCFDWrXz008/wc7OrtW0Z8+eduOrqKhAbGwsXF1doVAoMG/ePDQ2Nl7xdhMRERG1ZNOETKPRQK1WY8+ePcjPz4fRaER0dDQuXLgglklOTkZubi6ys7Oh0WhQWVmJ+Pj4VnVNnz4d48ePb7e9r776CqdOnRKn0NBQi2WbmpoQGxuLhoYG7N69G2vXrkVmZibS0tK6vsFEREREbbDpTf1bt241e52ZmQmFQgGdToeIiAgYDAasWrUKWVlZGD16NIBLj1UKCgrCnj17xOdZvvnmmwCA6upqHDx40GJ73t7eUCqVVsW2fft2HD58GF999RV8fX0xZMgQvPzyy5g/fz4WLlwIiUTSlU0mIiIiaqVH3UNmMBgAAF5eXgAAnU4Ho9GIqKgosUxgYCD69+8PrVbb6foffvhhKBQK/OUvf8Hnn3/eblmtVovBgwfD19dXnBcTE4Pa2lqUlpa2uU59fT1qa2vNJiIiIqKO9JiErLm5GXPmzEF4eDhCQkIAAHq9HhKJBJ6enmZlfX19odfrra7b3d0dr7/+OrKzs/HFF1/gL3/5C+Li4tpNyvR6vVkyZmrXtKwt6enpkMvl4uTv7291jERERHTz6jHjkKnVapSUlGDXrl3dXnfv3r2RkpIivg4LC0NlZSWWLFmChx9+uNvaSU1NNWuntraWSRkRERF1qEecIUtKSkJeXh4KCwvh5+cnzlcqlWhoaEBNTY1Z+aqqKqvvBbNk+PDhOHbsmMXlSqWyVW9O02tLbUulUnh4eJhNRERERB2xaUImCAKSkpKQk5ODgoICBAQEmC0PDQ2Fk5MTduzYIc4rLy9HRUUFVCrVFbVdXFyMPn36WFyuUqlw6NAhnD59WpyXn58PDw8PBAcHX1HbRERERC3Z9JKlWq1GVlYWPvvsM8hkMvHeLLlcDhcXF8jlciQmJiIlJQVeXl7w8PDA008/DZVKJfawBIBjx47h/Pnz0Ov1uHjxIoqLiwEAwcHBkEgkWLt2LSQSCYYOHQoA+PTTT7F69Wq8//77Yh05OTlITU1FWVkZACA6OhrBwcGYNGkSFi9eDL1ejwULFkCtVkMqlV6jPUREREQ3A5smZBkZGQCAyMhIs/lr1qzB1KlTAQDLli2Dvb09EhISUF9fj5iYGKxYscKs/IwZM6DRaMTXpsTrxIkTGDhwIADg5Zdfxs8//wxHR0cEBgZi48aNGDdunLiOwWAwG5TWwcEBeXl5mDVrFlQqFdzc3DBlyhQsWrSouzafiIiICABgJwiCYOsgblS1tbWQy+VY9t0qPlyciOgmxYeLX39Mv98Gg+Ga3Q/eI27qJyIiIrqZ9ZhhL25k0/80jj0uiYiIyCKeISMiIiKyMSZkRERERDbGS5bXwPnNn8DelTf1ExHRteU+brytQyAr8QwZERERkY0xISMiIiKyMSZkRERERDZm04QsPT0dYWFhkMlkUCgUiIuLMxstHwDq6uqgVqvh7e0Nd3d3JCQktHro9+zZsxEaGgqpVIohQ4a02ZYgCFi6dCluv/12SKVS9OvXD6+88kq78Z05cwYTJ06Eh4cHPD09kZiYiPPnz1/RNhMRERFdzqYJmUajgVqtxp49e5Cfnw+j0Yjo6GhcuHBBLJOcnIzc3FxkZ2dDo9GgsrIS8fHxreqaPn06xo+3fPPiM888g/fffx9Lly5FWVkZPv/8c9x9993txjdx4kSUlpYiPz8feXl5KCoqwsyZM7u+wURERERt6FGPTqquroZCoYBGo0FERAQMBgN8fHyQlZUlPneyrKwMQUFB0Gq1Zg8YB4CFCxdi8+bN4sPFTY4cOYI777wTJSUlGDRokFWxHDlyBMHBwdi3bx+GDRsGANi6dSsefPBB/PLLL+jbt2+HdZgevfDr2tXwYC9LIiK6xtjLsmtu+kcnGQwGAICXlxcAQKfTwWg0IioqSiwTGBiI/v37Q6vVWl1vbm4ubrnlFuTl5SEgIAADBw7EjBkzcObMGYvraLVaeHp6iskYAERFRcHe3h7ffvttm+vU19ejtrbWbCIiIiLqSI9JyJqbmzFnzhyEh4cjJCQEAKDX6yGRSODp6WlW1tfXF3q93uq6jx8/jp9//hnZ2dn44IMPkJmZCZ1OJ551a4ter4dCoTCb5+joCC8vL4ttp6enQy6Xi5O/v7/VMRIREdHNq8cMDKtWq1FSUoJdu3Z1e93Nzc2or6/HBx98gNtvvx0AsGrVKoSGhqK8vNzqy5gdSU1NRUpKivi6traWSRkRERF1qEecIUtKSkJeXh4KCwvh5+cnzlcqlWhoaEBNTY1Z+aqqKiiVSqvr79OnDxwdHcVkDACCgoIAABUVFW2uo1Qqcfr0abN5jY2NOHPmjMW2pVIpPDw8zCYiIiKijtg0IRMEAUlJScjJyUFBQQECAgLMloeGhsLJyQk7duwQ55WXl6OiogIqlcrqdsLDw9HY2Igff/xRnPfDDz8AAAYMGNDmOiqVCjU1NdDpdOK8goICNDc3Y/jw4Va3TURERNQRm16yVKvVyMrKwmeffQaZTCbemyWXy+Hi4gK5XI7ExESkpKTAy8sLHh4eePrpp6FSqcx6WB47dgznz5+HXq/HxYsXxV6WwcHBkEgkiIqKwp///GdMnz4d//3vf9Hc3Ay1Wo377rtPPGu2d+9eTJ48GTt27EC/fv0QFBSE+++/H08++SRWrlwJo9GIpKQkPPbYY1b1sCQiIiKylk0TsoyMDABAZGSk2fw1a9Zg6tSpAIBly5bB3t4eCQkJqK+vR0xMDFasWGFWfsaMGdBoNOLroUOHAgBOnDiBgQMHwt7eHrm5uXj66acREREBNzc3PPDAA3j99dfFdf744w+Ul5fDaDSK8z766CMkJSVhzJgxYgxvvvlmd+4CIiIiop41DtmNhuOQERGRLXEcsq6xxThkPaaX5Y3MPS4B7rzBn4iIiCzoEb0siYiIiG5mTMiIiIiIbIwJGREREZGN8R6ya+Cwtg7ubhJbh0FERNRtQv7ibOsQbig8Q0ZERERkY0zIiIiIiGzMpglZeno6wsLCIJPJoFAoEBcXh/LycrMydXV1UKvV8Pb2hru7OxISElBVVWVWZvbs2QgNDYVUKsWQIUNatbNw4ULY2dm1mtzc3NqNr6KiArGxsXB1dYVCocC8efPQ2Nh4xdtNRERE1JJNEzKNRgO1Wo09e/YgPz8fRqMR0dHRuHDhglgmOTkZubm5yM7OhkajQWVlJeLj41vVNX36dIwf3/YAeM8++yxOnTplNgUHB+Nvf/ubxdiampoQGxuLhoYG7N69G2vXrkVmZibS0tKufMOJiIiIWuhRI/VXV1dDoVBAo9EgIiICBoMBPj4+yMrKwrhx4wAAZWVlCAoKglarNXueJXDpTNjmzZvFZ1lacuDAAQwZMgRFRUUYOXJkm2W2bNmCsWPHorKyEr6+vgCAlStXYv78+aiuroZE0vFN+qaRfrVbq+DuxoFhiYjoxnEj39Rvi5H6e9Q9ZAaDAQDg5eUFANDpdDAajYiKihLLBAYGon///tBqtV1u5/3338ftt99uMRkDAK1Wi8GDB4vJGADExMSgtrYWpaWlba5TX1+P2tpas4mIiIioIz0mIWtubsacOXMQHh6OkJAQAIBer4dEIoGnp6dZWV9fX+j1+i61U1dXh48++giJiYntltPr9WbJmKld07K2pKenQy6Xi5O/v3+XYiQiIqKbS49JyNRqNUpKSrBhw4ar2k5OTg7OnTuHKVOmdHvdqampMBgM4nTy5Mlub4OIiIhuPD1iYNikpCTk5eWhqKgIfn5+4nylUomGhgbU1NSYnSWrqqqCUqnsUlvvv/8+xo4d2+rs1+WUSiX27t1rNs/Uu9NS21KpFFKptEtxERER0c3LpmfIBEFAUlIScnJyUFBQgICAALPloaGhcHJywo4dO8R55eXlqKiogEql6nR7J06cQGFhYYeXKwFApVLh0KFDOH36tDgvPz8fHh4eCA4O7nTbRERERJbYNCFTq9VYt24dsrKyIJPJoNfrodfrcfHiRQCAXC5HYmIiUlJSUFhYCJ1Oh2nTpkGlUpn1sDx27BiKi4vFdYuLi1FcXIyGhgaz9lavXo0+ffrggQceaBVLTk4OAgMDxdfR0dEIDg7GpEmTcODAAWzbtg0LFiyAWq3mWTAiIiLqVja9ZJmRkQEAiIyMNJu/Zs0aTJ06FQCwbNky2NvbIyEhAfX19YiJicGKFSvMys+YMQMajUZ8PXToUACXzogNHDgQwKVOA5mZmZg6dSocHBxaxWIwGMwGpXVwcEBeXh5mzZoFlUoFNzc3TJkyBYsWLbrSzSYiIiIy06PGIbvRcBwyIiK6UXEcsu7VI27qv9EFq5zh4XHjfnCJiIjoyvSYYS+IiIiIblZMyIiIiIhsjAkZERERkY3xHrJroLxwI9zdXGwdBhERXeeCop6wdQh0lfAMGREREZGNMSEjIiIisjEmZEREREQ2ZtOELD09HWFhYZDJZFAoFIiLizMbLR8A6urqoFar4e3tDXd3dyQkJIgP+TaZPXs2QkNDIZVKMWTIkDbb2rZtG0aMGAGZTAYfHx8kJCTgp59+aje+M2fOYOLEifDw8ICnpycSExNx/vz5K9lkIiIiolZsmpBpNBqo1Wrs2bMH+fn5MBqNiI6OxoULF8QyycnJyM3NRXZ2NjQaDSorKxEfH9+qrunTp2P8+PFttnPixAk88sgjGD16NIqLi7Ft2zb89ttvbdbT0sSJE1FaWor8/Hzk5eWhqKgIM2fOvLKNJiIiIrpMj3p0UnV1NRQKBTQaDSIiImAwGODj44OsrCyMGzcOAFBWVoagoCBotVqzB4wDwMKFC7F582YUFxebzd+0aRMef/xx1NfXw97+Ug6am5uLRx55BPX19XBycmoVy5EjRxAcHIx9+/Zh2LBhAICtW7fiwQcfxC+//IK+fft2uD2mRy/s3fwue1kSEdEVYy/La8MWj07qUfeQGQwGAICXlxcAQKfTwWg0IioqSiwTGBiI/v37Q6vVWl1vaGgo7O3tsWbNGjQ1NcFgMODDDz9EVFRUm8kYAGi1Wnh6eorJGABERUXB3t4e3377bZvr1NfXo7a21mwiIiIi6kiPSciam5sxZ84chIeHIyQkBACg1+shkUjg6elpVtbX1xd6vd7qugMCArB9+3Y8//zzkEql8PT0xC+//IKPP/7Y4jp6vR4KhcJsnqOjI7y8vCy2nZ6eDrlcLk7+/v5Wx0hEREQ3rx6TkKnVapSUlGDDhg3dXrder8eTTz6JKVOmYN++fdBoNJBIJBg3bhy684ptamoqDAaDOJ08ebLb6iYiIqIbV48YqT8pKUm8ad7Pz0+cr1Qq0dDQgJqaGrOzZFVVVVAqlVbX/84770Aul2Px4sXivHXr1sHf3x/ffvttq3vRTG2fPn3abF5jYyPOnDljsW2pVAqpVGp1XERERESAjc+QCYKApKQk5OTkoKCgAAEBAWbLQ0ND4eTkhB07dojzysvLUVFRAZVKZXU7f/zxh3gzv4mDgwOAS5dK26JSqVBTUwOdTifOKygoQHNzM4YPH25120REREQdsWlCplarsW7dOmRlZUEmk0Gv10Ov1+PixYsAALlcjsTERKSkpKCwsBA6nQ7Tpk2DSqUyO6t17NgxFBcXi+sWFxejuLgYDQ0NAIDY2Fjs27cPixYtwtGjR/Hdd99h2rRpGDBgAIYOHQoA2Lt3LwIDA/Hrr78CAIKCgnD//ffjySefxN69e/HNN98gKSkJjz32mFU9LImIiIisZdNLlhkZGQCAyMhIs/lr1qzB1KlTAQDLli2Dvb09EhISUF9fj5iYGKxYscKs/IwZM6DRaMTXpiTrxIkTGDhwIEaPHo2srCwsXrwYixcvhqurK1QqFbZu3QoXl0vDUfzxxx8oLy+H0WgU6/noo4+QlJSEMWPGiDG8+eab3b0biIiI6CbXo8Yhu9FwHDIiIupOHIfs2rDFOGQ94qb+G92gUeOv2RtKRERE158eM+wFERER0c2KCRkRERGRjTEhIyIiIrIx3kN2DdTuqADcZLYOg4iIbMAjeoCtQ6DrAM+QEREREdkYEzIiIiIiG7NpQpaeno6wsDDIZDIoFArExcWhvLzcrExdXR3UajW8vb3h7u6OhIQEVFVVmZWZPXs2QkNDIZVKMWTIkDbb+vjjjzFkyBC4urpiwIABWLJkSYfxnTlzBhMnToSHhwc8PT2RmJiI8+fPd3l7iYiIiNpi04RMo9FArVZjz549yM/Ph9FoRHR0NC5cuCCWSU5ORm5uLrKzs6HRaFBZWYn4+PhWdU2fPh3jx49vs50tW7Zg4sSJeOqpp1BSUoIVK1Zg2bJlePvtt9uNb+LEiSgtLUV+fr748POZM2de2UYTERERXaZHjdRfXV0NhUIBjUaDiIgIGAwG+Pj4ICsrC+PGjQMAlJWVISgoCFqt1ux5lgCwcOFCbN68GcXFxWbzJ0yYAKPRiOzsbHHeW2+9hcWLF6OiogJ2dnatYjly5AiCg4Oxb98+DBs2DACwdetWPPjgg/jll1+sep6laaTfk58eggdv6iciuinxpv7rjy1G6u9R95AZDAYAgJeXFwBAp9PBaDQiKipKLBMYGIj+/ftDq9VaXW99fT2cnZ3N5rm4uOCXX37Bzz//3OY6Wq0Wnp6eYjIGAFFRUbC3t8e3335rsZ3a2lqziYiIiKgjPSYha25uxpw5cxAeHo6QkBAAgF6vh0Qigaenp1lZX19f6PV6q+uOiYnBp59+ih07dqC5uRk//PADXn/9dQDAqVOn2lxHr9dDoVCYzXN0dISXl5fFttPT0yGXy8XJ39/f6hiJiIjo5tVjEjK1Wo2SkhJs2LCh2+t+8sknkZSUhLFjx0IikWDEiBF47LHHAAD29t23C1JTU2EwGMTp5MmT3VY3ERER3bh6REKWlJSEvLw8FBYWws/PT5yvVCrR0NCAmpoas/JVVVVQKpVW129nZ4fXXnsN58+fx88//wy9Xo+7774bAHDLLbe0uY5SqcTp06fN5jU2NuLMmTMW25ZKpfDw8DCbiIiIiDpi04RMEAQkJSUhJycHBQUFCAgIMFseGhoKJycn7NixQ5xXXl6OiooKqFSqTrfn4OCAfv36QSKRYP369VCpVPDx8WmzrEqlQk1NDXQ6nTivoKAAzc3NGD58eKfbJiIiIrLEpo9OUqvVyMrKwmeffQaZTCbemyWXy+Hi4gK5XI7ExESkpKTAy8sLHh4eePrpp6FSqcx6WB47dgznz5+HXq/HxYsXxV6WwcHBkEgk+O2337Bp0yZERkairq4Oa9asEYfRMNm7dy8mT56MHTt2oF+/fggKCsL999+PJ598EitXroTRaERSUhIee+wxq3pYEhEREVnLpglZRkYGACAyMtJs/po1azB16lQAwLJly2Bvb4+EhATU19cjJiYGK1asMCs/Y8YMs+Rq6NChAIATJ05g4MCBAIC1a9fi2WefhSAIUKlU2Llzp3jZEgD++OMPlJeXw2g0ivM++ugjJCUlYcyYMWIMb775ZndtPhERERGAHjYO2Y2G45ARERHHIbv+2GIcMpueIbtZeIzpzxv8iYiIyKIe0cuSiIiI6GbGhIyIiIjIxpiQEREREdkY7yG7Bg4ePAh3d3dbh0FERN1kyJAhtg6BbjA8Q0ZERERkY0zIiIiIiGyMCRkRERGRjdk0IUtPT0dYWBhkMhkUCgXi4uJQXl5uVqaurg5qtRre3t5wd3dHQkICqqqqxOUHDhzA448/Dn9/f7i4uCAoKAjLly9v1dbOnTvx5z//GVKpFLfeeisyMzM7jO/gwYMYOXIknJ2d4e/vj8WLF1/xNhMRERFdzqYJmUajgVqtxp49e5Cfnw+j0Yjo6GhcuHBBLJOcnIzc3Fzx2ZOVlZWIj48Xl+t0OigUCqxbtw6lpaV44YUXkJqairffflssc+LECcTGxmLUqFEoLi7GnDlzMGPGDGzbts1ibLW1tYiOjsaAAQOg0+mwZMkSLFy4EO++++7V2RlERER00+pRj06qrq6GQqGARqNBREQEDAYDfHx8kJWVhXHjxgEAysrKEBQUBK1Wa/aA8ZbUajWOHDmCgoICAMD8+fPxxRdfoKSkRCzz2GOPoaamBlu3bm2zjoyMDLzwwgvQ6/WQSCQAgOeeew6bN29GWVmZVdtjevTC119/zV6WREQ3EPayvLHZ4tFJPeoeMoPBAADw8vICcOnsl9FoRFRUlFgmMDAQ/fv3h1arbbceUx0AoNVqzeoAgJiYmHbr0Gq1iIiIEJMx0zrl5eU4e/Zsm+vU19ejtrbWbCIiIiLqSI9JyJqbmzFnzhyEh4cjJCQEAMSzU56enmZlfX19odfr26xn9+7d2LhxI2bOnCnO0+v18PX1bVVHbW0tLl682GY9ltYxLWtLeno65HK5OPn7+1veYCIiIqL/r8ckZGq1GiUlJdiwYUOX6ygpKcEjjzyCF198EdHR0d0YnXVSU1NhMBjE6eTJk9c8BiIiIrr+9IiR+pOSkpCXl4eioiL4+fmJ85VKJRoaGlBTU2N2lqyqqgpKpdKsjsOHD2PMmDGYOXMmFixYYLZMqVSa9cw01eHh4QEXF5c2Y7K0jmlZW6RSKaRSafsbS0RERHQZm54hEwQBSUlJyMnJQUFBAQICAsyWh4aGwsnJCTt27BDnlZeXo6KiAiqVSpxXWlqKUaNGYcqUKXjllVdataNSqczqAID8/HyzOtpap6ioCEaj0WydQYMGoVevXp3eViIiIiJLbJqQqdVqrFu3DllZWZDJZNDr9dDr9eJ9XXK5HImJiUhJSUFhYSF0Oh2mTZsGlUol9rAsKSnBqFGjEB0djZSUFLGO6upqsZ2nnnoKx48fxz//+U+UlZVhxYoV+Pjjj5GcnCyWefvttzFmzBjx9YQJEyCRSJCYmIjS0lJs3LgRy5cvR0pKyjXaO0RERHSzsOkly4yMDABAZGSk2fw1a9Zg6tSpAIBly5bB3t4eCQkJqK+vR0xMDFasWCGW3bRpE6qrq7Fu3TqsW7dOnD9gwAD89NNPAICAgAB88cUXSE5OxvLly+Hn54f3338fMTExYvnffvsNP/74o/haLpdj+/btUKvVCA0NRe/evZGWlmbWWYCIiIioO/SocchuNByHjIjoxsRxyG5sthiHrEfc1H+ju/POO6/ZG0pERETXnx4z7AURERHRzYoJGREREZGNMSEjIiIisjHeQ3YNnD+fB3t7V1uHQURE1CO4u8fZOoQeh2fIiIiIiGyMCRkRERGRjdk0IUtPT0dYWBhkMhkUCgXi4uJQXl5uVqaurg5qtRre3t5wd3dHQkKC2TMmDxw4gMcffxz+/v5wcXFBUFAQli9fblbHqVOnMGHCBNx+++2wt7fHnDlzrIqvoqICsbGxcHV1hUKhwLx589DY2HjF201ERETUkk0TMo1GA7VajT179iA/Px9GoxHR0dG4cOGCWCY5ORm5ubnIzs6GRqNBZWUl4uPjxeU6nQ4KhQLr1q1DaWkpXnjhBaSmpuLtt98Wy9TX18PHxwcLFizAXXfdZVVsTU1NiI2NRUNDA3bv3o21a9ciMzMTaWlp3bcDiIiIiNDDRuqvrq6GQqGARqNBREQEDAYDfHx8kJWVhXHjxgEAysrKEBQUBK1WKz7P8nJqtRpHjhxBQUFBq2WRkZEYMmQI/vvf/7Yby5YtWzB27FhUVlbC19cXALBy5UrMnz8f1dXVkEgkHW6PaaTfX3/9CB4evKmfiIgI6Pk39dtipP4edQ+ZwWAAAHh5eQG4dPbLaDQiKipKLBMYGIj+/ftDq9W2W4+pjq7SarUYPHiwmIwBQExMDGpra1FaWtrmOvX19aitrTWbiIiIiDrSYxKy5uZmzJkzB+Hh4QgJCQEA6PV6SCQSeHp6mpX19fWFXq9vs57du3dj48aNV/wQcL1eb5aMmdo1LWtLeno65HK5OPn7+19RDERERHRz6DEJmVqtRklJCTZs2NDlOkpKSvDII4/gxRdfRHR0dDdGZ53U1FQYDAZxOnny5DWPgYiIiK4/PWJg2KSkJOTl5aGoqAh+fn7ifKVSiYaGBtTU1JidJauqqoJSqTSr4/DhwxgzZgxmzpyJBQsWXHFMSqUSe/fuNZtn6t15edsmUqkUUqn0itsmIiKim4tNz5AJgoCkpCTk5OSgoKAAAQEBZstDQ0Ph5OSEHTt2iPPKy8tRUVEBlUolzistLcWoUaMwZcoUvPLKK90Sm0qlwqFDh3D69GlxXn5+Pjw8PBAcHNwtbRAREREBNj5DplarkZWVhc8++wwymUy8N0sul8PFxQVyuRyJiYlISUmBl5cXPDw88PTTT0OlUok9LEtKSjB69GjExMQgJSVFrMPBwQE+Pj5iW8XFxQCA8+fPo7q6GsXFxZBIJGJylZOTg9TUVJSVlQEAoqOjERwcjEmTJmHx4sXQ6/VYsGAB1Go1z4IRERFRt7LpsBd2dnZtzl+zZg2mTp0K4NLAsHPnzsX69etRX1+PmJgYrFixQrxsuHDhQrz00kut6hgwYAB++umndttqWSYzMxPTpk1Dy93x888/Y9asWdi5cyfc3NwwZcoUvPrqq3B0tC6P5bAXRERErXHYi9Z61DhkNxomZERERK0xIWutR9zUf6Nzdx8Ld/dr84YSERHR9afHDHtBREREdLNiQkZERERkY0zIiIiIiGyM95BdA7t+r4ZbQ52twyAiIhu7t7fC1iFQD8UzZEREREQ2xoSMiIiIyMaYkBERERHZmE0TsvT0dISFhUEmk0GhUCAuLg7l5eVmZerq6qBWq+Ht7Q13d3ckJCSID/kGgAMHDuDxxx+Hv78/XFxcEBQUhOXLl5vV8emnn+K+++6Dj48PPDw8oFKpsG3btg7jO3jwIEaOHAlnZ2f4+/tj8eLF3bPhRERERC3YNCHTaDRQq9XYs2cP8vPzYTQaER0djQsXLohlkpOTkZubi+zsbGg0GlRWViI+Pl5crtPpoFAosG7dOpSWluKFF15Aamoq3n77bbFMUVER7rvvPnz55ZfQ6XQYNWoUHnroIXz//fcWY6utrUV0dDQGDBgAnU6HJUuWYOHChXj33Xevzs4gIiKim1aPenRSdXU1FAoFNBoNIiIiYDAY4OPjg6ysLIwbNw4AUFZWhqCgIGi1WvEB45dTq9U4cuQICgoKLLZ1xx13YPz48UhLS2tzeUZGBl544QXo9XpIJBIAwHPPPYfNmzeLDyC/XH19Perr68XXtbW18Pf3xxfHj8FNJrNqHxAR0Y2LvSyvD7Z4dFKPuofMYDAAALy8vABcOvtlNBoRFRUllgkMDET//v2h1WrbrcdUR1uam5tx7ty5dstotVpERESIyRgAxMTEoLy8HGfPnm1znfT0dMjlcnHy9/e3WD8RERGRSY9JyJqbmzFnzhyEh4cjJCQEAMSzU56enmZlfX19odfr26xn9+7d2LhxI2bOnGmxraVLl+L8+fN49NFHLZbR6/Xw9fVt1a5pWVtSU1NhMBjE6eTJkxbrJyIiIjLpMQPDqtVqlJSUYNeuXV2uo6SkBI888ghefPFFREdHt1kmKysLL730Ej777DMoFN176lgqlUIqlXZrnURERHTj6xFnyJKSkpCXl4fCwkL4+fmJ85VKJRoaGlBTU2NWvqqqCkql0mze4cOHMWbMGMycORMLFixos50NGzZgxowZ+Pjjj80ug7ZFqVSa9eY0tWtaRkRERNRdbJqQCYKApKQk5OTkoKCgAAEBAWbLQ0ND4eTkhB07dojzysvLUVFRAZVKJc4rLS3FqFGjMGXKFLzyyitttrV+/XpMmzYN69evR2xsbIexqVQqFBUVwWg0ivPy8/MxaNAg9OrVq7ObSkRERGSRTRMytVqNdevWISsrCzKZDHq9Hnq9HhcvXgQAyOVyJCYmIiUlBYWFhdDpdJg2bRpUKpXYw7KkpASjRo1CdHQ0UlJSxDqqq6vFdrKysjB58mS8/vrrGD58uFjG1IkAAN5++22MGTNGfD1hwgRIJBIkJiaitLQUGzduxPLly5GSknKN9g4RERHdLGyakGVkZMBgMCAyMhJ9+vQRp40bN4plli1bhrFjxyIhIQERERFQKpX49NNPxeWbNm1CdXU11q1bZ1ZHWFiYWObdd99FY2Mj1Gq1WZlnnnlGLPPbb7/hxx9/FF/L5XJs374dJ06cQGhoKObOnYu0tLR2OwsQERERdUWPGofsRmMax4TjkBEREcBxyK4XthiHrMf0sryR/cXb55q9oURERHT9YUJ2FZlOPtbW1to4EiIiIrKW6Xf7Wl5EZEJ2Ff3+++8AwBH7iYiIrkPnzp2DXC6/Jm0xIbuKTI9mqqiouGZv6PXM9OzPkydP8hKvlbjPOo/7rHO4vzqP+6zzeto+EwQB586dQ9++fa9Zm0zIriJ7+0udWOVyeY/4gF0vPDw8uL86ifus87jPOof7q/O4zzqvJ+2za30ipUeM1E9ERER0M2NCRkRERGRjTMiuIqlUihdffJEPHLcS91fncZ91HvdZ53B/dR73Wedxn3FgWCIiIiKb4xkyIiIiIhtjQkZERERkY0zIiIiIiGyMCRkRERGRjTEhu0reeecdDBw4EM7Ozhg+fDj27t1r65B6rIULF8LOzs5sCgwMtHVYPUpRUREeeugh9O3bF3Z2dti8ebPZckEQkJaWhj59+sDFxQVRUVE4evSobYLtATraX1OnTm31mbv//vttE2wPkZ6ejrCwMMhkMigUCsTFxaG8vNysTF1dHdRqNby9veHu7o6EhARUVVXZKGLbsmZ/RUZGtvqcPfXUUzaK2PYyMjJw5513ioO/qlQqbNmyRVx+s3++mJBdBRs3bkRKSgpefPFFfPfdd7jrrrsQExOD06dP2zq0HuuOO+7AqVOnxGnXrl22DqlHuXDhAu666y688847bS5fvHgx3nzzTaxcuRLffvst3NzcEBMTg7q6umscac/Q0f4CgPvvv9/sM7d+/fprGGHPo9FooFarsWfPHuTn58NoNCI6OhoXLlwQyyQnJyM3NxfZ2dnQaDSorKxEfHy8DaO2HWv2FwA8+eSTZp+zxYsX2yhi2/Pz88Orr74KnU6H/fv3Y/To0XjkkUdQWloKgJ8vCNTt7r77bkGtVouvm5qahL59+wrp6ek2jKrnevHFF4W77rrL1mFcNwAIOTk54uvm5mZBqVQKS5YsEefV1NQIUqlUWL9+vQ0i7Fku31+CIAhTpkwRHnnkEZvEc704ffq0AEDQaDSCIFz6TDk5OQnZ2dlimSNHjggABK1Wa6swe4zL95cgCMK9994rPPPMM7YL6jrQq1cv4f333+fnSxAEniHrZg0NDdD9v/buL6TJtw8D+DX9+ailqUtzm7I5XU1KjTBcI/LAmbogtDqwLNCSgpqBSn8wMFsFnfbnoKOyEyVKtEAKK1OPrINgmISSSxHLBQmaf0pF7/egGvnmr3pfzHvm9QFh3HuEazffg0ufZ8/z4gUyMzO9a35+fsjMzER7e7vEZL7t9evX0Ol0iI+Px/79+9Hf3y870pLR29sLj8czZ+bCwsJgsVg4cz/R2tqKNWvWwGw24+jRoxgaGpIdyaeMjIwAANRqNQDgxYsXmJ6enjNniYmJ0Ov1nDP8uF/f1NTUIDIyEklJSaioqMDExISMeD5nZmYGt2/fxvj4OKxWK+cLfLj4gvvw4QNmZmYQHR09Zz06OhpdXV2SUvk2i8WCW7duwWw2Y3BwEE6nE9u2bUNnZydCQ0Nlx/N5Ho8HAOaduW/v0Vw5OTnYvXs3jEYj3G43zpw5A7vdjvb2dvj7+8uOJ93s7CxKS0uxdetWJCUlAfgyZ4qiIDw8fM6xnLP59wsACgoKYDAYoNPp0NHRgdOnT6O7uxv19fUS08r18uVLWK1WfP78GSEhIWhoaMD69evhcrmW/XyxkJF0drvd+zolJQUWiwUGgwF37txBcXGxxGT0t9q7d6/3dXJyMlJSUpCQkIDW1lbYbDaJyXyDw+FAZ2cnr+X8Tf+2X0eOHPG+Tk5Ohlarhc1mg9vtRkJCwmLH9AlmsxkulwsjIyOoq6tDYWEh2traZMfyCTxlucAiIyPh7+//wzdD3r9/D41GIynV0hIeHo5169ahp6dHdpQl4dtcceb+f/Hx8YiMjOTMASgpKUFjYyNaWloQGxvrXddoNJiamsLw8PCc45f7nP3bfs3HYrEAwLKeM0VRYDKZkJqaikuXLmHjxo24cuUK5wssZAtOURSkpqaiubnZuzY7O4vm5mZYrVaJyZaOsbExuN1uaLVa2VGWBKPRCI1GM2fmPn78iOfPn3PmftPAwACGhoaW9cwJIVBSUoKGhgY8ffoURqNxzvupqakICAiYM2fd3d3o7+9flnP2q/2aj8vlAoBlPWf/bXZ2FpOTk5wv8JTlH1FeXo7CwkJs3rwZaWlpuHz5MsbHx3Hw4EHZ0XzSiRMnsHPnThgMBrx79w5VVVXw9/fHvn37ZEfzGWNjY3P+qu7t7YXL5YJarYZer0dpaSkuXryItWvXwmg0orKyEjqdDnl5efJCS/Sz/VKr1XA6ndizZw80Gg3cbjdOnToFk8mE7OxsianlcjgcqK2txf379xEaGuq9bicsLAzBwcEICwtDcXExysvLoVarsWrVKhw/fhxWqxVbtmyRnH7x/Wq/3G43amtrsWPHDqxevRodHR0oKytDeno6UlJSJKeXo6KiAna7HXq9HqOjo6itrUVrayuampo4XwBve/GnXLt2Tej1eqEoikhLSxPPnj2THcln5efnC61WKxRFETExMSI/P1/09PTIjuVTWlpaBIAffgoLC4UQX259UVlZKaKjo0VgYKCw2Wyiu7tbbmiJfrZfExMTIisrS0RFRYmAgABhMBjE4cOHhcfjkR1bqvn2C4Corq72HvPp0ydx7NgxERERIVasWCF27dolBgcH5YWW6Ff71d/fL9LT04VarRaBgYHCZDKJkydPipGREbnBJTp06JAwGAxCURQRFRUlbDabePTokff95T5fKiGEWMwCSERERERz8RoyIiIiIslYyIiIiIgkYyEjIiIikoyFjIiIiEgyFjIiIiIiyVjIiIiIiCRjISMiIiKSjIWMiIiISDIWMiIiIiLJWMiIiL4qKiqCSqWCSqWCoigwmUw4f/48Dhw44F2f7ycuLg7Al2dmFhQUQKfTISgoCLGxscjNzUVXV5fcD0ZEPo8PFyci+k5OTg6qq6sxOTmJBw8ewOFwoKqqCoODg95jtFotqqurkZOTAwDw9/fH9PQ0tm/fDrPZjPr6emi1WgwMDODhw4cYHh6W9GmIaKngsyyJiL4qKirC8PAw7t27513LysrC6Ogo2tvbvWsqlQoNDQ3Iy8vzrrlcLmzatAl9fX0wGAyLmJqI/gY8ZUlE9BPBwcGYmpr65XFRUVHw8/NDXV0dZmZmFiEZEf1NWMiIiOYhhMCTJ0/Q1NSEjIyMXx4fExODq1ev4uzZs4iIiEBGRgYuXLiAN2/eLEJaIlrqWMiIiL7T2NiIkJAQBAUFwW63Iz8/H+fOnfut33U4HPB4PKipqYHVasXdu3exYcMGPH78+M+GJqIlj9eQERF9VVRUhLdv3+L69etQFAU6nQ7//PPjd5/mu4ZsPkIIZGdnY3JyEm1tbX8oNRH9DfgfMiKi76xcuRImkwl6vX7eMva/UKlUSExMxPj4+AKlI6K/FQsZEdECcLlcyM3NRV1dHV69eoWenh7cuHEDN2/eRG5urux4ROTjeB8yIqIFEBsbi7i4ODidTvT19XlvGOt0OlFWViY7HhH5OF5DRkRERCQZT1kSERERScZCRkRERCQZCxkRERGRZCxkRERERJKxkBERERFJxkJGREREJBkLGREREZFkLGREREREkrGQEREREUnGQkZEREQkGQsZERERkWT/AUvM5sdkh6jjAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAHgCAYAAAAL2HHvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMW0lEQVR4nOzdfVhUZf4/8DdPMzwNgyDDqKDSVgJh6SLpxEqoBBVWLLhZmo+YmztkgrlGuWS2LaWWaw/iViqWoYaFBeUDCQ6ZY+oUKiikaWHhIKUMagIDnN8f/uZ8GWFgQHRQ36/rOtfFnHOf+/6cMzNnPpxz7vvYCYIggIiIiIhsxt7WARARERHd7JiQEREREdkYEzIiIiIiG2NCRkRERGRjTMiIiIiIbIwJGREREZGNMSEjIiIisjEmZEREREQ2xoSMiIiIyMaYkFGPFhkZCTs7O0RGRto6FJvJzMyEnZ0d7Ozs8NNPP9k6HCKiG5Ytf3Nu6IRs586d4g/Z5ZOrqysGDBiAuLg4ZGVlobGx0dbhUg/1008/iZ+bqVOn2jocukzL7/nChQttHQ4RUZfc0AlZey5evIiKigp89tlnmDhxIu655x7o9Xpbh9WugQMHMikgIrqKeFaebOWmSchmzZqFQ4cOiZNWq8Vbb72FgQMHAgD27duHRx55BHzWOhEREV1rjrYO4FpRKBQICQkxmzdixAhMnDgRd999N44dO4a9e/ciLy8PDz30kI2iJCIiopvRTXOGzJJevXohNTVVfL1161YbRkNEREQ3o5s+IQOAu+++W/z7559/Fv+2tndby5u+MzMzWy2fOnUq7OzsxMujNTU1SEtLwx133AE3Nzd4enoiIiICH330UZv1m+5pMMW2du3aVp0ULN3vsGvXLkyaNAkDBw6Es7MzPD09MXToUCxYsADV1dXt7pe6ujq8+eabiIyMhI+PD5ycnODl5YVBgwbhgQcewBtvvHHFvf727NmDv/3tb1AqlXB2dkZAQABmzpyJ8vLyTtVz7NgxJCcnY/DgwZDL5XBxccEtt9yCqVOnYv/+/VcUY3f57rvv8NRTT2HQoEFwd3eHm5sbBg0ahFmzZuGHH36wup76+nosXboUf/7znyGXy+Hh4YHhw4djxYoVaGpqsrje5ffGHD16FElJSbjtttvg6ura5uf8p59+QnJyMu644w7IZDK4urritttuw9///nccOnSo3Tgvv9F+3759ePzxx+Hn5wepVIp+/fph0qRJOHLkiNXb3lWnTp3CihUrMG7cONx2221wc3MTY3jkkUewceNGNDc3W1y/ZceBnTt3QhAErFq1Cn/5y1/g7e0NDw8P3H333fjwww/N1mtoaMDKlSsxYsQIeHl5QSaTITw8HB9//LFVcev1erzwwgsYNmwYvLy8IJVK4e/vj0cffRRfffVVu+s2NTUhMzMTMTExUCqVkEgkkMvluO222zBmzBj85z//weHDh62K43KXf5bKy8sxc+ZMBAQEwNnZGX369MGjjz6KPXv2WFVfV49Tl78vzc3NWL16NUaNGgVfX1/Y29tbfc+t6Tit0WgAABqNptVx1nQMv5zBYEB6ejrCw8Ph4+MDiUSCPn364KGHHsKmTZvavRXm8u9JYWEh4uLi0LdvX7i4uCAoKAgvv/wyLly4YLbel19+iQcffFAsFxwcjPT0dDQ0NFhs6/L7kE3fSX9/fzg7O8Pf3x/Tpk1DWVmZVfssNzcX48aNE7/T3t7eUKlUePXVV3H+/HmL613+21pfX4///ve/GDFiBHr37t2qg05DQwNyc3ORlJSEsLAw9OrVC05OTvD29sbw4cOxcOFC/Pbbb1bFfKW/OVd6LGmXcAMrLCwUAAgAhBdffNFiubKyMrHc/fffL85fs2aNOP/EiRMW1z9x4oRYbs2aNa2WT5kyRQAgDBgwQCgrKxMGDhwolr98UqvVrda/9957LZY3Tffee6/ZOk1NTYJarW53HblcLmzfvr3NbaqsrBSCg4M7bHfu3LkW90tH3njjDcHe3r7Net3c3IQvvvhC3PbLt6+lJUuWCE5OThZjtLOzE/71r391Oc6W7++UKVM6vX5TU5OQnJws2NnZWYzR0dFR+N///tfm+i0/h999950QGhpqsZ6IiAjh3LlzbdbTcl9u3rxZcHNza7V+y8/52rVrBalUarEtBwcH4T//+Y/F7W753XvnnXcER0fHNutxdXUVNBpNp/erSUff88bGRoufs5bTfffdZ3HftWxj+/btwkMPPWSxntmzZwuCIAhnzpwRIiIiLJZ75ZVX2t2udevWtfketZwSExMFo9HYat1z584JI0eO7HCbExISOr/DBfPP0pdffmkxTnt7e2HZsmUW67nS41TL92XLli1CVFRUq/Wt/c6ajtPtTQMGDGi13ldffSV4e3u3u96DDz5o8bPV8rObnp5u8Thxzz33COfPnxeam5uF2bNnW2zr/vvvFxobG9tsa8CAAeI+WbVqlcXvpFQqFT7++GOL++rixYvCX//613a3uW/fvsL333/f5votj2n79u0ThgwZ0mr9lt9la94bb29vYdeuXRZjFoQr/83pjmNJe5iQCYKQnZ0tlps+fbo4v7sTMh8fH+G2224TZDKZsGDBAmHnzp3C/v37hffee0/w8/MT69i6davZ+sePHxcOHTok9O3bVwAgPPLII8KhQ4fMpuPHj5utM2/ePLG+gIAAYeXKlcLevXuFwsJCITk5WUxgJBKJUFxc3CrmhIQEcf0nnnhC+PTTT4U9e/YI+/btEz7//HMhLS1NuOuuu7qckH366admB9z//Oc/wu7du4Xdu3cL//73vwUPDw/B09NTuO222yx+OQRBEBYvXizWc+eddwoZGRnCV199Jezfv1/46KOPBJVKJS5fvnx5l2K90oTsH//4h7h+RESEsHr1amHnzp3C3r17hffee0+44447xOWfffZZq/Vbfg7DwsIEAML48eOFL7/8Uti/f7+QlZUlzgcgxMXFtRmH6UATEBAguLu7Cz4+PsKrr74qfPPNN8KePXuEt956S6iurhYEQRDy8vLEHwZ3d3fhxRdfFL7++mtBq9UKr7/+utC7d2+xvRUrVrTZnmn5iBEjBHt7e+Guu+4SVq9eLezbt08oKioSkpOTxYNb//79hfr6+k7vW0Ho+HtuNBoFe3t7YfTo0cKSJUuErVu3CjqdTti5c6ewevVqs8/I5MmTO2xj+PDhAgBh4sSJwhdffCHodDph/fr1wqBBg8Qy+fn5wsMPPyw4OjoKs2bNErZv3y7odDph1apV4vfYwcFBKCkpabO9jRs3ivv/lltuEd544w0x7k8++UR48MEHxbaSk5NbrT937lxx+dixY4X169cL33zzjaDT6YQtW7YI//nPf4R77rlHGDduXJf2uemzdNtttwmenp6tvsOvvPKK4OHhIcaQk5PTZj1Xepxq+b7ceeedAgDh4YcfFj799FNBp9MJX375pbBhwwartumXX34RDh06JAwbNkwAIAwbNqzVcba8vNxsnV27dokx+vr6Cv/+97+F3NxcQafTCbm5ucITTzwhxhcfH99mu6bld999twBAUKlUQlZWlrB//35h69atwgMPPCCWeeGFF4TXX39dACA88MADwieffCLodDrhs88+E0aMGCGWy8jIaLMtU0J21113CU5OTkLfvn2Ft956S/j2228FjUYjzJ8/X/wnzMnJSdi3b1+b9Tz66KNiW3fddZfwwQcfCPv27RO2bdsmTJs2Tfzsenl5Cb/88kur9Vse0+68807Bzs5OmDx5svh9ysnJEb788kux/MSJE4VbbrlFmDt3rrBx40ZBq9UK+/btEzZt2iQ89dRTgkQiEX9jq6qq2oy5O35zuuNY0p6bPiEzGo1mH+QPPvhAXNbdCZnpg9DWQfjo0aOCs7OzeEBpS8v/btpz8OBB8YcuJCREOHv2bKsyW7ZsEcvcfffdZssuXrwoHmQ6Srh+//33dpe3pb6+XvxRksvlwuHDh1uVOXTokNkBva0vR2lpqRjniy++KDQ3N7cq09TUJB4U3d3dhTNnznQ63itJyLZv3y6u+/7777dZ5uLFi8Lo0aMF4NJ/4Jef8Wj5OQTQ5lkpo9EoxMTEiGW++OKLVmVanmnt27ev8PPPP7cZT0NDg/j+uLu7t/lf7k8//ST06dNHAC6d4TIlci21jPnBBx9sM+H697//LZb59NNP24ynIx19z5ubm4WjR4+2W0daWpoAXDqb+sMPP7TbBgDhv//9b6syp06dEmQymfjDYGdn12YicuDAAfG7Zzqb1lJ1dbUgl8sF4NI/iG2dARMEQXj++ecF4NJZqLKyMrNl/v7+AoAOE66ufH8FwfyzZOk7XFJSIn6H+/XrJzQ0NJgtv9LjlCC0fl8WLFjQpe1pa9vaOysvCJe+J6arHffff79w4cKFNsu9++67YnxtnelrGX9CQkKrs1uNjY3ib5RMJhOcnZ2FOXPmtKrnwoUL4m/EnXfe2WYspuWmY82pU6dalSkoKBDPnIWFhbVanpeXJ9YxZsyYNr/XLbf50UcfbbX88mOapWOjybFjx9o8vpscPHhQcHd3t/gZ6K7fnO44lrTnpk3Izp8/L+zcuVOIjIw0+4DW1dWJZa5GQvbmm29arOexxx4T/6toi7UJ2axZs8T29uzZY7HcjBkzxHJ79+4V5//666/i/LbO2Fypjz/+WKx/6dKlFsu99tpr7X45pk+fLgCX/pNt78t69uxZ8b++d999t9PxXklCZkq0Oro0dPjwYYsH7cv/m7S0rSdPnhQT1NjY2FbLW/6ItvzH43IbN24Uy7366qsWy61bt04st3jx4lbLTcucnZ0t/tdaW1sr/nfb1pkea1h7Jrw9jY2N4lm/tj6Tl58hs2Ty5MliufHjx1ssZ7qUOXTo0FbLFi1aJCYxLY9HlzMajUK/fv0EAMLzzz9vtsz0OejqWeGOtPwsWfsdzs7ONlt2pccpQTB/X26//XaLl+o6w9qE7IMPPhA/36dPn263rOns14QJE1otM8Xv6upqMUFevXq1WM7f379VcmtiSgYACDU1Na2Wt0zINm3aZDHelu/N5WfJTGfsnJychIqKCot1mC4fOzo6CpWVlWbLWh7TRo8ebbGOzpgzZ46Y3F+uu35zrNHRsaQ9N81N/S+99JLZzZnu7u6IjIzEzp07AVwaFmPz5s2QSqVXLQY7OztMmDDB4vLQ0FAAwJkzZ1BTU9Pldkw3+95xxx0YPny4xXJPPvlkq3UAwNvbGxKJBADw4YcfdvtTDExt2dnZYcqUKRbLTZs2DXZ2dhaX5+bmAgASEhLaLefp6YnBgwcDALRabVdC7pLa2lrx8zVu3Lh2ywYFBaF3794A2o9xypQpFrfVz88P0dHRAC7d7GzpBn+JRIK//e1vFtto+f5Mnz7dYrm//e1vkMvlZuu05b777oNCoWhzmUwmw2233QYAOH78uMU6ulNzczMqKytRXl6OkpISlJSU4MiRI/Dz8wMAHDhwoN31H3vsMYvL7rrrrk6Va2ubP//8cwDA2LFj2z0eOTo6QqVSAWj9menTpw8AYOPGjfjjjz8s1nGlOvMdvvwzcqXHqcuNHz8eDg4OVsXdHUzv07333gsfH592y0ZERABo/7t93333wcvLq81lLT9X8fHxcHJy6rDciRMnLLbVq1cvPPLIIxaXt/zet9znjY2NYqeH6Oho+Pv7W6zD9L41NjaKx8G2TJw40eIyS86ePYsff/wRpaWl4nfY09MTAHD48GEYjUaz8t31m3O5Kz2WXO6mScgsCQgIwLx583Do0CEMGTLkqrbVu3dveHt7W1ze8st47ty5LrVRX1+Po0ePAkC7BzkAGDp0qPjFLikpEedLpVKMHz8eALBp0ybceuut+Oc//4kvv/zyihJFE1PvvICAADEJaYuPj4/FXk0///yz2PsqNTXV4iOyTJOpp+W1fBrD999/L/a2efzxxzuM0dRLqL0Yw8LC2m3T1GP4woULFhOc2267Dc7OzhbrMH0WAgIC2v2hkUgkGDp0qNk6bQkMDGw3ZtPnvqufeWsIgoB169Zh1KhRcHd3R79+/RAYGIjBgweLU3FxMQB02Fvr9ttvt7jM9KNgbbnLt7mpqUmM43//+1+Hn5lNmzYBaP2ZMf3o7N69GwEBAUhKSkJOTk6HPas7qzPf4Za9crvjOHW5O++809qwu4XpmLJt27YO36elS5cCaP+73Z2fK6D979PQoUPh6Gh5GNIhQ4aI/5S3fN+OHz8uJvgdvW8tl3fH+3bo0CFMnz4dffr0gZeXF2699VaEhISI319Tr8zm5macPXu21brAlf3mmHTnseRyN83AsLNmzcI//vEPAJeyZGdnZ/Tu3Vv8D/9acHV1bXe5vf3/5cftDV/QnpYfREtnJUxM3Yb1ej3OnDljtuztt99GTU0NcnNz8fPPP2PJkiVYsmQJ7O3t8ec//xmPPvooZs6c2aX9Z2qro/gAwNfXt83/9E6fPt3pdgFc1bMFl7saMXa0z3x9fcW/L39PTXr16tVuHZ15f5RKZbttAdZ/7rv6me9IXV0d4uPjsWXLFqvKX7x4sd3l7W1Py++wNeUu7x5/5syZLp2Rvvwz869//Qu//vor1qxZg9OnT+Odd97BO++8A+DSGamEhAT84x//MPu8dEVnvsMtPyPddZxqqaPPdXfryve7vc9Wd36ugPa/Tx3tc0dHR3h5ebXa5y3/7qgO07Hh8vUuZ837tmrVKjz11FNWfzcu38/d8ZsDdP+x5HI3TULW1kj9N7rOnHq9nIeHBz7//HPs3bsXH3/8MXbu3Ini4mI0NTVh//792L9/P5YuXYrNmzeLl02uZXwtDzZpaWntXoJryc3NrcttdlbLGP/3v//hnnvusWq99g5QV7LPTKy9rNMdbfUEr7zyingAvffee6FWq/HnP/8ZSqUSLi4u4o9YREQEvv76a5s+Pq3lZ2bGjBl45plnrFrPdDbDxMnJCatWrcLcuXOxfv16FBQUYP/+/WhoaEBpaSlKS0vxxhtvYN26de1euupId3xGuutzdi0vVwL/91498MADWLx48TVt+0pdT+9bWVmZmIwpFArMmzcPo0ePxsCBAyGTycSzp6tXr0ZiYiIAWPwOX2nMV/tYctMkZF3R8r+N9gZ6u3zAPltq+WNeVVXVbtnGxkb8/vvvAGDx3oW7775bvAx27tw57Ny5E5mZmfj0009x+vRpJCQk4Mcff4SLi0unY+wovvbKtLz06+Tk1COT7ZYxurq6dkuMVVVV7V6yaLm/LL2nHTGtZ837Y7oE09W2rjZBEPD+++8DAEaOHImCggKz73VL7f0Xf6203I+CIFzxZyY4OBgvv/wyXn75ZdTV1WHXrl3IysrCBx98gPPnz+Pxxx/Hjz/+KN5z1lmd+Q633LbuPk7Zgre3NyorK9HQ0NAjjz/tsWafm74PLfd5y787qqPl5dkred8yMzPR2NgIBwcHaDQai7dAWHMW7kp+c67FseSmv4esPTKZTPz78mvSLXVmlPUrYU12L5VKxZukv/3223bLfv/99+LNj9YcUGQyGR566CF88sknmD17NoBLoxbv2rWrw3VbMt1gf+LECfFA25bq6mqLTwK45ZZbxMul33zzTafav1aGDBkivmfdFeO+ffusWu7q6opbbrmlS22YPgsnTpxo954jo9GI77//3mydnubMmTPiD8Pf/vY3iwfQ8+fPd/rpEFeDRCLBHXfcAaD7P9fOzs6IiorC6tWrsWTJEgCXLqnk5eV1uc7OfIdbfkau5nHqSll7FsV0/6TpzOP1pLi4uN3LfwcOHBC3qeU+v+WWW8RLph29b3v37hX/vpL3rbS0FMClDgvt3Y/a3hNZuuM351ocS5iQtSMgIED8u703e/369dciHPFG7Pr6+nbLRUVFAbj0QW75pbicKdtvuY61xowZI/7d2RsXTW0JgoAPPvjAYrnMzEyLp3wdHBzw4IMPAgC2b99+TR6/01k+Pj4YMWIEACArK6tbbqj+8MMPLe6TX3/9Fdu3bwdw6dE2Xb2E0/L9WbNmjcVymzZtgsFgMFunp2n5o9Pemez333+/23sTd9XDDz8M4NKlmm3btl2VNq7k+9tSZ77Dl39GrsVxqiusPc6a3ieDwdDu96QnOnPmjNhLvS2rV68W/265zx0dHXHvvfcCAPLz8/HLL79YrMP0vjk6Olp8tJ81TN/L9r6/p06dEnu9tqU7fnOuxbGECVk7QkJCxFOtb7/9dptf0I8//hjZ2dnXJB7TZYUff/yx3XKzZs0Ss/eZM2eitra2VZnt27dj1apVAC5dlmzZe+/48eNi12ZLTD/8gHniao24uDhxW15++eU2/5s4fPgwXnnllXbrSU1NhYODA5qbmzFu3Lh2Dw5NTU346KOP2i1zNSxYsADApSEwxo0b124v1fr6erzzzjuoq6uzWKa4uFg8u9FSY2MjnnzySfG/2lmzZnU5ZtNz9IBL90y09czKkydP4tlnnwVw6WzctGnTutze1eTj4yP2PFu/fn2b3+F9+/bhX//61zWOzLJnnnkG7u7uAC51wzedIbDkiy++wMGDB8XXph/b9u5fuZLv7+UsfYePHDkifof79OnT6l61Kz1OXS2mY9Px48fb3YdTpkwRh3149tlnUVRU1G69u3bt6vC4ei2lpKS0eXlOo9Hg3XffBXBpKKbL97larQZw6fmSiYmJrYaYAC4ldKbPWHx8fJcviQMQz6QePXoUu3fvbrX8jz/+wIQJE9q9gb47fnOuxbGE95C1w9HREX//+9+Rnp6OkpISjB49Gv/85z/Rv39/VFVVITs7G5mZmbjnnnva/KB0t3vuuQeFhYXYt28fXn31VTzwwAPiTeouLi7o168fgEunZ+fOnYslS5bgwIED+POf/4z58+dj6NChuHDhAnJzc/Hmm2+iqakJEokE//vf/8zaqaiowKhRoxAcHIy//vWvGDZsmFj3yZMnsXHjRvHhyEOGDOmw+/PlJBIJ3nrrLYwbNw5nz57FiBEjMH/+fERGRkIQBOzcuROvvfYaAODWW2/FsWPH2qxn8ODBWLp0KZKTk3H48GGEhIRg5syZGD16NHx9fVFXV4effvoJWq0WmzZtwqlTp3Do0CFxjJiuOHbsWJsPkL/c3XffjeDgYDz44IN45plnsHz5chQVFSEoKAhPPfWU+FDqCxcu4NixY/j666/x6aef4uzZs+2OkzNs2DDMnz8fxcXFmDx5MhQKBY4ePYo33nhDPMvw0EMPYezYsV3eRolEgnfffRcPPfQQamtrER4ejnnz5mHMmDFwcHDA7t278eqrr4q9zJYuXdpuV3Jbsre3x8SJE/HOO+/g4MGD+Mtf/oKUlBTcdtttMBgM+PLLL7FixQq4u7ujb9++1+z2g/b4+vpi7dq1GDduHE6dOoVhw4Zh6tSpeOCBB+Dn5wej0YhffvkFe/fuxaZNm3D8+HHk5uaKwwfU1tbi4YcfxsCBAxEfH4/hw4djwIABcHR0xKlTp5CbmyuevejXr98VfVZuvfVWVFdXm32HgUvj4L366qviGdS33nqrVceDKz1OXS333HOP2Ds1JSUFTzzxhHh7hJOTEwYMGADg0mXXjz/+GJGRkTh//jxGjx6Nxx57DHFxcQgICEBzczNOnToFnU6HnJwcHDp0CG+99ZZ4hsmW7rrrLhw+fBihoaFITU3F3Xffjfr6enz55ZdYtmwZGhsb4ejoKPbMbSk2NhZ/+9vfkJ2dje3bt2PEiBFISUlBYGAgzp49iw0bNohn2Ly8vPDGG29cUayTJk3CW2+9hebmZsTGxmLevHn4y1/+AmdnZ+h0OixbtgxHjx5FeHi4xcv83fGbc02OJV0aivY60R0jeF+4cMHs0UqXT5GRkUJJSYlVI/W39WDaljp6MsAvv/wieHl5tRlHWw8Xb/kMxbYmuVwubNu2rVU7lz+OxNIUGBjY6hmanbFkyRKLD9J1dXUV8vLyrBo1+9133xVcXV07jFcikXT42Iu2tByp39qp5QOVm5ubhZdeesnig3xbTm5ubsIff/xh1v7lDxcfOnSoxfXDw8OF2traNrfD2hHITTIzM7vt4eLt6Wxcl2v5eV24cGGr5TU1NW0+vNg0eXl5CRqNpt04WrZRWFhoMRZrn+7x4osviuUs+fzzzy1+31tO9vb2QkFBgbietZ/XPn36CPv377fYfnta7qu8vDyL3z97e/t2Ryu/kuOUIFj/vnTGuXPnhFtuuaXNWNo6hmu1WvFRVR1Na9eubbW+Nd+Tjp4GY9LR/mj5tJf33nvP4jFJIpEI69evt9hOdz5cvL3viclLL73Ubltz5861qs4r/c3pjmNJe3jJsgOurq4oKCjAK6+8gsGDB8PFxQUeHh4ICwvD22+/ja+++uqaDaXQr18/7N27F4mJibj11lvbHdzT3t4e77zzDoqKijBx4kT0798fUqkUHh4eGDJkCJ5//nkcPXpUHNm9pZEjR2Lnzp1ITU3FqFGjcOutt4rdi319fREdHY2VK1eiuLj4ii53PPvss9i1axfi4+OhUCgglUoxYMAATJ8+Hfv370dsbKxV9Tz55JM4fvw4XnrpJYSHh6N3795wdHSEm5sbbr/9diQkJGDlypX49ddfceutt3Y53q6ys7NDWloafvjhB/zzn//EsGHD4OXlBQcHB8hkMgQHB2PixIlYu3YtTp061W6P1V69emH37t1IT0/HkCFDIJPJ4O7ujrCwMLz11lvQaDRmnVGuxJQpU1BWVoZnnnkGQUFBcHNzg4uLC/70pz/hySefxPfff4/U1NRuaetKtLyhuq0xmuRyOb755hu8/PLLGDx4MJydneHu7o6goCA8++yzOHDggDiSek/y0EMP4cSJE1i6dKl41tfJyQkuLi4ICAjA2LFj8cYbb+Cnn37CqFGjxPUGDBiAvXv3YuHChYiOjsagQYPg6ekJR0dH9O7dGxEREViyZAnKysrEp4NcidjYWOzfvx/Tpk3DgAEDIJFIoFAokJCQgF27dmHu3LkW172S49TV4u7ujt27d4uf+47G0RsxYgSOHj2KlStXIjY2Fn379oVEIoGzszP8/f0RHR2NV155BWVlZZg8efI12oqOzZgxA19//TUeffRRMeZ+/fph8uTJ+P7779t90oSzszM+/fRTfP7554iPjxfX79WrF4YPH4709HSUl5d322DraWlp+OKLLxAdHY1evXpBIpHAz88P8fHx2L59uzjwbkeu9Dfnah9L7ATBhoPuEBFdoY0bN4o/Hu+99x5mzJhh44hufJGRkdBoNLj33nvbfSwO9SwDBw7Ezz//jClTplh16wVdWzxDRkTXtZY3vXf0mCYiop6KCRkRXbfq6+vFYWc8PDwwbNgwG0dERNQ17GVJRNeV33//Hb/88gt++uknLF26VOwRNWPGjHbvqyQi6smYkBHRdeXDDz9EcnKy2bwRI0bgpZdeslFERERXjgkZEV137OzsIJfLERQUhEcffRSzZs2CVCq1dVhERF3GXpZERERENsab+omIiIhsjAkZERERkY0xISMiIiKyMSZkRERERDbGhIyIiIjIxpiQEREREdkYEzIiIiIiG2NCRkRERGRjTMiIiIiIbIwJGREREZGNMSEjIiIisjEmZEREREQ2xoSMiIiIyMaYkBERERHZGBMyIiIiIhtjQkZERERkY0zIiIiIiGzM0dYB3Miam5tRWVkJmUwGOzs7W4dDREREVhAEAefOnUPfvn1hb39tzl0xIbuKKisr4e/vb+swiIiIqAtOnjwJPz+/a9IWE7KrSCaTAbj0hnp4eNg4GiIiIrJGbW0t/P39xd/xa4EJ2VVkukxZ8EMDXN3rbRwNEVHPMu5uH1uHQNSua3m7EW/qJyIiIrIxJmRERERENsaEjIiIiMjGbJqQpaenIywsDDKZDAqFAnFxcSgvLzcrU1dXB7VaDW9vb7i7uyMhIQFVVVVmZSoqKhAbGwtXV1coFArMmzcPjY2N4vJdu3YhPDwc3t7ecHFxQWBgIJYtW9ZhfAcPHsTIkSPh7OwMf39/LF68uHs2nIiIiKgFmyZkGo0GarUae/bsQX5+PoxGI6Kjo3HhwgWxTHJyMnJzc5GdnQ2NRoPKykrEx8eLy5uamhAbG4uGhgbs3r0ba9euRWZmJtLS0sQybm5uSEpKQlFREY4cOYIFCxZgwYIFePfddy3GVltbi+joaAwYMAA6nQ5LlizBwoUL212HiIiIqCvsBEEQbB2ESXV1NRQKBTQaDSIiImAwGODj44OsrCyMGzcOAFBWVoagoCBotVqMGDECW7ZswdixY1FZWQlfX18AwMqVKzF//nxUV1dDIpG02VZ8fDzc3Nzw4Ycftrk8IyMDL7zwAvR6vVjHc889h82bN6OsrKzNderr61Ff/3+9KU3dZtfu+BGu7teu6ywR0fWAvSypp6qtrYVcLofBYLhmw1b1qHvIDAYDAMDLywsAoNPpYDQaERUVJZYJDAxE//79odVqAQBarRaDBw8WkzEAiImJQW1tLUpLS9ts5/vvv8fu3btx7733WoxFq9UiIiLCLKGLiYlBeXk5zp492+Y66enpkMvl4sRBYYmIiMgaPSYha25uxpw5cxAeHo6QkBAAEM9OeXp6mpX19fWFXq8Xy7RMxkzLTcta8vPzg1QqxbBhw6BWqzFjxgyL8XSmXpPU1FQYDAZxOnnyZAdbTURERNSDBoZVq9UoKSnBrl27rlobX3/9Nc6fP489e/bgueeew6233orHH3+82+qXSqWQSqXdVh8RERHdHHpEQpaUlIS8vDwUFRWZPTNKqVSioaEBNTU1ZmfJqqqqoFQqxTJ79+41q8/UC9NUxiQgIAAAMHjwYFRVVWHhwoUWEzKlUtmqN6eleomIiIiuhE0vWQqCgKSkJOTk5KCgoEBMmExCQ0Ph5OSEHTt2iPPKy8tRUVEBlUoFAFCpVDh06BBOnz4tlsnPz4eHhweCg4Mttt3c3Gx2A/7lVCoVioqKYDQazeodNGgQevXq1eltJSIiIrLEpgmZWq3GunXrkJWVBZlMBr1eD71ej4sXLwIA5HI5EhMTkZKSgsLCQuh0OkybNg0qlQojRowAAERHRyM4OBiTJk3CgQMHsG3bNixYsABqtVq8fPjOO+8gNzcXR48exdGjR7Fq1SosXboUTzzxhBjL22+/jTFjxoivJ0yYAIlEgsTERJSWlmLjxo1Yvnw5UlJSruEeIiIiopuBTS9ZZmRkAAAiIyPN5q9ZswZTp04FACxbtgz29vZISEhAfX09YmJisGLFCrGsg4MD8vLyMGvWLKhUKri5uWHKlClYtGiRWKa5uRmpqak4ceIEHB0d8ac//QmvvfYa/v73v4tlfvvtN/z444/ia7lcju3bt0OtViM0NBS9e/dGWloaZs6ceRX2BBEREd3MetQ4ZDca0zgmHIeMiKg1jkNGPZUtxiHrETf13+jihvW+Zm8oERERXX96zDhkRERERDcrJmRERERENsZLltdATf5KNLu52DoMIiK6QXne/7StQ6ArxDNkRERERDbGhIyIiIjIxpiQEREREdmYTROy9PR0hIWFQSaTQaFQIC4uDuXl5WZl6urqoFar4e3tDXd3dyQkJLR6xmRFRQViY2Ph6uoKhUKBefPmobGxsc02v/nmGzg6OmLIkCEdxnfw4EGMHDkSzs7O8Pf3x+LFi7u8rURERESW2DQh02g0UKvV2LNnD/Lz82E0GhEdHY0LFy6IZZKTk5Gbm4vs7GxoNBpUVlYiPj5eXN7U1ITY2Fg0NDRg9+7dWLt2LTIzM5GWltaqvZqaGkyePNnsEUmW1NbWIjo6GgMGDIBOp8OSJUuwcOFCvPvuu92z8URERET/X48aqb+6uhoKhQIajQYREREwGAzw8fFBVlYWxo0bBwAoKytDUFAQtFotRowYgS1btmDs2LGorKyEr68vAGDlypWYP38+qqurIZFIxPofe+wx3HbbbXBwcMDmzZtRXFxsMZaMjAy88MIL0Ov1Yh3PPfccNm/ejLKyMqu2xzTS78+bXoMHe1kSEdFVwl6W3csWI/X3qHvIDAYDAMDLywsAoNPpYDQaERUVJZYJDAxE//79odVqAQBarRaDBw8WkzEAiImJQW1tLUpLS8V5a9aswfHjx/Hiiy9aFYtWq0VERIRZQhcTE4Py8nKcPXu2zXXq6+tRW1trNhERERF1pMckZM3NzZgzZw7Cw8MREhICAOLZKU9PT7Oyvr6+0Ov1YpmWyZhpuWkZABw9ehTPPfcc1q1bB0dH64Zes6bey6Wnp0Mul4uTv7+/VW0RERHRza3HJGRqtRolJSXYsGFDt9bb1NSECRMm4KWXXsLtt9/erXVfLjU1FQaDQZxOnjx5VdsjIiKiG0OPGKk/KSkJeXl5KCoqgp+fnzhfqVSioaEBNTU1ZmfJqqqqoFQqxTJ79+41q8/UC1OpVOLcuXPYv38/vv/+eyQlJQG4dDZOEAQ4Ojpi+/btGD16dKuYlEplq96cLetti1QqhVQq7eTWExER0c3OpmfIBEFAUlIScnJyUFBQgICAALPloaGhcHJywo4dO8R55eXlqKiogEqlAgCoVCocOnQIp0+fFsvk5+fDw8MDwcHB8PDwwKFDh1BcXCxOTz31FAYNGoTi4mIMHz68zdhUKhWKiopgNBrN6h00aBB69erVnbuBiIiIbnI2TcjUajXWrVuHrKwsyGQy6PV66PV6XLx4EQAgl8uRmJiIlJQUFBYWQqfTYdq0aVCpVBgxYgQAIDo6GsHBwZg0aRIOHDiAbdu2YcGCBVCr1ZBKpbC3t0dISIjZpFAo4OzsjJCQELi5uQEA3n77bbPhMCZMmACJRILExESUlpZi48aNWL58OVJSUq79jiIiIqIbmk0vWWZkZAAAIiMjzeavWbMGU6dOBQAsW7YM9vb2SEhIQH19PWJiYrBixQqxrIODA/Ly8jBr1iyoVCq4ublhypQpWLRoUadi+e233/Djjz+Kr+VyObZv3w61Wo3Q0FD07t0baWlpmDlzZtc2loiIiMiCHjUO2Y2G45AREdG1wHHIupctxiHrETf13+g873vqmr2hREREdP3pMcNeEBEREd2smJARERER2RgTMiIiIiIb4z1k18DqHzfBxd3V1mEQERHdMP5+22O2DqFb8QwZERERkY0xISMiIiKyMSZkRERERDZm04QsPT0dYWFhkMlkUCgUiIuLQ3l5uVmZuro6qNVqeHt7w93dHQkJCa0e+l1RUYHY2Fi4urpCoVBg3rx5aGxsFJfv3LkTdnZ2rSa9Xt9ufAcPHsTIkSPh7OwMf39/LF68uPs2noiIiOj/s2lCptFooFarsWfPHuTn58NoNCI6OhoXLlwQyyQnJyM3NxfZ2dnQaDSorKxEfHy8uLypqQmxsbFoaGjA7t27sXbtWmRmZiItLa1Ve+Xl5Th16pQ4KRQKi7HV1tYiOjoaAwYMgE6nw5IlS7Bw4UK8++673bsTiIiI6KbXox6dVF1dDYVCAY1Gg4iICBgMBvj4+CArKwvjxo0DAJSVlSEoKAharRYjRozAli1bMHbsWFRWVsLX1xcAsHLlSsyfPx/V1dWQSCTYuXMnRo0ahbNnz8LT09OqWDIyMvDCCy9Ar9dDIpEAAJ577jls3rwZZWVlba5TX1+P+vp68XVtbS38/f2x7LtV7GVJRETUja5mL0tbPDqpR91DZjAYAABeXl4AAJ1OB6PRiKioKLFMYGAg+vfvD61WCwDQarUYPHiwmIwBQExMDGpra1FaWmpW/5AhQ9CnTx/cd999+Oabb9qNRavVIiIiQkzGTPWWl5fj7Nmzba6Tnp4OuVwuTv7+/p3YeiIiIrpZ9ZiErLm5GXPmzEF4eDhCQkIAQDw7dflZLV9fX/H+L71eb5aMmZablgFAnz59sHLlSnzyySf45JNP4O/vj8jISHz33XcW47Gm3sulpqbCYDCI08mTJ63ceiIiIrqZ9ZiBYdVqNUpKSrBr165ur3vQoEEYNGiQ+Pqee+7Bjz/+iGXLluHDDz/stnakUimkUmm31UdEREQ3hx5xhiwpKQl5eXkoLCyEn5+fOF+pVKKhoQE1NTVm5auqqqBUKsUyl/e6NL02lWnL3XffjWPHjllc3tV6iYiIiDrLpgmZIAhISkpCTk4OCgoKEBAQYLY8NDQUTk5O2LFjhzivvLwcFRUVUKlUAACVSoVDhw7h9OnTYpn8/Hx4eHggODjYYtvFxcXo06ePxeUqlQpFRUUwGo1m9Q4aNAi9evXq9LYSERERWWLThEytVmPdunXIysqCTCaDXq+HXq/HxYsXAQByuRyJiYlISUlBYWEhdDodpk2bBpVKhREjRgAAoqOjERwcjEmTJuHAgQPYtm0bFixYALVaLV4+/O9//4vPPvsMx44dQ0lJCebMmYOCggKo1WoxlrfffhtjxowRX0+YMAESiQSJiYkoLS3Fxo0bsXz5cqSkpFzDPUREREQ3A5veQ5aRkQEAiIyMNJu/Zs0aTJ06FQCwbNky2NvbIyEhAfX19YiJicGKFSvEsg4ODsjLy8OsWbOgUqng5uaGKVOmYNGiRWKZhoYGzJ07F7/++itcXV1x55134quvvsKoUaPEMr/99ht+/PFH8bVcLsf27duhVqsRGhqK3r17Iy0tDTNnzrwKe4KIiIhuZj1qHLIbjWkcE45DRkRE1L1utHHIekwvyxvZ9D+Nu2ZvKBEREV1/ekQvSyIiIqKbGRMyIiIiIhvjJctr4PzmT2DvynvIiIioa9zHjbd1CHSV8QwZERERkY0xISMiIiKyMSZkRERERDZm04QsPT0dYWFhkMlkUCgUiIuLQ3l5uVmZuro6qNVqeHt7w93dHQkJCa2eMVlRUYHY2Fi4urpCoVBg3rx5aGxsNCtTX1+PF154AQMGDIBUKsXAgQOxevXqduOzpl4iIiKiK2XTm/o1Gg3UajXCwsLQ2NiI559/HtHR0Th8+DDc3NwAAMnJyfjiiy+QnZ0NuVyOpKQkxMfH45tvvgEANDU1ITY2FkqlErt378apU6cwefJkODk54T//+Y/Y1qOPPoqqqiqsWrUKt956K06dOoXm5maLsVlbLxEREdGV6lEj9VdXV0OhUECj0SAiIgIGgwE+Pj7IysrCuHHjAABlZWUICgqCVqvFiBEjsGXLFowdOxaVlZXw9fUFAKxcuRLz589HdXU1JBIJtm7disceewzHjx+Hl5eXVbFYU29HTCP9/rp2NTzYy5KIiLqIvSyvLVuM1N+j7iEzGAwAICZNOp0ORqMRUVFRYpnAwED0798fWq0WAKDVajF48GAxaQKAmJgY1NbWorS0FADw+eefY9iwYVi8eDH69euH22+/Hc8++6z4EPO2WFPv5err61FbW2s2EREREXWkx4xD1tzcjDlz5iA8PBwhISEAAL1eD4lEAk9PT7Oyvr6+0Ov1YpmWSZNpuWkZABw/fhy7du2Cs7MzcnJy8Ntvv+Ef//gHfv/9d6xZs6bNeKyp93Lp6el46aWXOrHVRERERD3oDJlarUZJSQk2bNjQ7XU3NzfDzs4OH330Ee6++248+OCDeOONN7B27dp2z5J1VmpqKgwGgzidPHmy2+omIiKiG1ePSMiSkpKQl5eHwsJC+Pn5ifOVSiUaGhpQU1NjVr6qqgpKpVIsc3mvS9NrU5k+ffqgX79+kMvlYpmgoCAIgoBffvmlzZisqfdyUqkUHh4eZhMRERFRR2yakAmCgKSkJOTk5KCgoAABAQFmy0NDQ+Hk5IQdO3aI88rLy1FRUQGVSgUAUKlUOHToEE6fPi2Wyc/Ph4eHB4KDgwEA4eHhqKysxPnz58UyP/zwA+zt7c0SwJasqZeIiIioO9g0IVOr1Vi3bh2ysrIgk8mg1+uh1+vFy4hyuRyJiYlISUlBYWEhdDodpk2bBpVKhREjRgAAoqOjERwcjEmTJuHAgQPYtm0bFixYALVaDalUCgCYMGECvL29MW3aNBw+fBhFRUWYN28epk+fDhcXFwBATk4OAgMDxdisqZeIiIioO9g0IcvIyIDBYEBkZCT69OkjThs3bhTLLFu2DGPHjkVCQgIiIiKgVCrx6aefissdHByQl5cHBwcHqFQqPPHEE5g8eTIWLVoklnF3d0d+fj5qamowbNgwTJw4EQ899BDefPNNsYzBYDAblNaaeomIiIi6Q48ah+xGw3HIiIioO3AcsmvLFuOQ9ZhhL25k7nEJcOcN/kRERGRBj+hlSURERHQzY0JGREREZGNMyIiIiIhsjPeQXQOH99TB3a3jh5ETERFdL0LCnW0dwg2FZ8iIiIiIbIwJGREREZGNMSEjIiIisjGbJmTp6ekICwuDTCaDQqFAXFyc2Wj5AFBXVwe1Wg1vb2+4u7sjISGh1UO/KyoqEBsbC1dXVygUCsybNw+NjY3i8qlTp8LOzq7VdMcdd7Qb38GDBzFy5Eg4OzvD398fixcv7r6NJyIiIvr/bJqQaTQaqNVq7NmzB/n5+TAajYiOjsaFCxfEMsnJycjNzUV2djY0Gg0qKysRHx8vLm9qakJsbCwaGhqwe/durF27FpmZmUhLSxPLLF++HKdOnRKnkydPwsvLC3/7298sxlZbW4vo6GgMGDAAOp0OS5YswcKFC/Huu+9enZ1BREREN60e9eik6upqKBQKaDQaREREwGAwwMfHB1lZWRg3bhwAoKysDEFBQdBqtRgxYgS2bNmCsWPHorKyEr6+vgCAlStXYv78+aiuroZE0rp34+bNmxEfH48TJ05gwIABbcaSkZGBF154AXq9Xqzjueeew+bNm1FWVtbmOvX19aivrxdf19bWwt/fH9ptVXB340j9RER047iRe1na4tFJPeoeMoPBAADw8vICAOh0OhiNRkRFRYllAgMD0b9/f2i1WgCAVqvF4MGDxWQMAGJiYlBbW4vS0tI221m1ahWioqIsJmOmeiMiIswSupiYGJSXl+Ps2bNtrpOeng65XC5O/v7+Vm45ERER3cx6TELW3NyMOXPmIDw8HCEhIQAgnp3y9PQ0K+vr6wu9Xi+WaZmMmZabll2usrISW7ZswYwZM9qNp7P1AkBqaioMBoM4nTx5st02iIiIiIAeNDCsWq1GSUkJdu3adVXbWbt2LTw9PREXF9ftdUulUkil0m6vl4iIiG5sPeIMWVJSEvLy8lBYWAg/Pz9xvlKpRENDA2pqaszKV1VVQalUimUu73Vpem0qYyIIAlavXo1Jkya1eW9ZS52pl4iIiOhK2DQhEwQBSUlJyMnJQUFBAQICAsyWh4aGwsnJCTt27BDnlZeXo6KiAiqVCgCgUqlw6NAhnD59WiyTn58PDw8PBAcHm9Wn0Whw7NgxJCYmdhibSqVCUVERjEajWb2DBg1Cr169urS9RERERG2xaUKmVquxbt06ZGVlQSaTQa/XQ6/X4+LFiwAAuVyOxMREpKSkoLCwEDqdDtOmTYNKpcKIESMAANHR0QgODsakSZNw4MABbNu2DQsWLIBarW51+XDVqlUYPny4eI9aS2+//TbGjBkjvp4wYQIkEgkSExNRWlqKjRs3Yvny5UhJSbmKe4SIiIhuRja9hywjIwMAEBkZaTZ/zZo1mDp1KgBg2bJlsLe3R0JCAurr6xETE4MVK1aIZR0cHJCXl4dZs2ZBpVLBzc0NU6ZMwaJFi8zqNBgM+OSTT7B8+fI2Y/ntt9/w448/iq/lcjm2b98OtVqN0NBQ9O7dG2lpaZg5c2Y3bDkRERHR/+lR45DdaEzjmHAcMiIiutFwHLLu1WN6Wd7Igkc4w8Pjxv3gEhER0ZXpEb0siYiIiG5mTMiIiIiIbIyXLK+B8sKNcHdzsXUYREREXRIU9YStQ7jh8QwZERERkY0xISMiIiKyMSZkRERERDZm04QsPT0dYWFhkMlkUCgUiIuLQ3l5uVmZuro6qNVqeHt7w93dHQkJCa2eMVlRUYHY2Fi4urpCoVBg3rx5aGxsNCvz0Ucf4a677oKrqyv69OmD6dOn4/fff283PmvqJSIiIrpSNk3INBoN1Go19uzZg/z8fBiNRkRHR+PChQtimeTkZOTm5iI7OxsajQaVlZWIj48Xlzc1NSE2NhYNDQ3YvXs31q5di8zMTKSlpYllvvnmG0yePFl8DFJ2djb27t2LJ5980mJs1tRLRERE1B161Ej91dXVUCgU0Gg0iIiIgMFggI+PD7KysjBu3DgAQFlZGYKCgqDVajFixAhs2bIFY8eORWVlJXx9fQEAK1euxPz581FdXQ2JRIKlS5ciIyPD7NFIb731Fl577TX88ssvbcZiTb0dMY30u3fzu+xlSURE162brZelLUbq71H3kBkMBgCAl5cXAECn08FoNCIqKkosExgYiP79+0Or1QIAtFotBg8eLCZNABATE4Pa2lqUlpYCAFQqFU6ePIkvv/wSgiCgqqoKmzZtwoMPPmgxFmvqvVx9fT1qa2vNJiIiIqKO9JiErLm5GXPmzEF4eDhCQkIAAHq9HhKJBJ6enmZlfX19odfrxTItkybTctMyAAgPD8dHH32E8ePHQyKRQKlUQi6X45133rEYjzX1Xi49PR1yuVyc/P39rdx6IiIiupn1mIRMrVajpKQEGzZs6Pa6Dx8+jGeeeQZpaWnQ6XTYunUrfvrpJzz11FPd2k5qaioMBoM4nTx5slvrJyIiohtTjxipPykpCXl5eSgqKoKfn584X6lUoqGhATU1NWZnyaqqqqBUKsUye/fuNavP1AvTVCY9PR3h4eGYN28eAODOO++Em5sbRo4ciX//+9/o06dPq5isqfdyUqkUUqm0M5tOREREZNszZIIgICkpCTk5OSgoKEBAQIDZ8tDQUDg5OWHHjh3ivPLyclRUVEClUgG4dH/YoUOHcPr0abFMfn4+PDw8EBwcDAD4448/YG9vvqkODg5iDG2xpl4iIiKi7mDThEytVmPdunXIysqCTCaDXq+HXq/HxYsXAQByuRyJiYlISUlBYWEhdDodpk2bBpVKhREjRgAAoqOjERwcjEmTJuHAgQPYtm0bFixYALVaLZ6teuihh/Dpp58iIyMDx48fxzfffIPZs2fj7rvvRt++fQEAOTk5CAwMFGOzpl4iIiKi7mDTS5YZGRkAgMjISLP5a9aswdSpUwEAy5Ytg729PRISElBfX4+YmBisWLFCLOvg4IC8vDzMmjULKpUKbm5umDJlChYtWiSWmTp1Ks6dO4e3334bc+fOhaenJ0aPHo3XXntNLGMwGMwGpbWmXiIiIqLu0KPGIbvRcBwyIiK6EXAcsquvR9zUf6MbNGr8NXtDiYiI6PrTY4a9ICIiIrpZMSEjIiIisjEmZEREREQ2xnvIroHaHRWAm8zWYRAREXU7j+gBtg7hhsAzZEREREQ2xoSMiIiIyMaYkBERERHZmE0TsvT0dISFhUEmk0GhUCAuLs5stHwAqKurg1qthre3N9zd3ZGQkCA+5NukoqICsbGxcHV1hUKhwLx589DY2GhW5p133kFQUBBcXFwwaNAgfPDBBx3GZ029RERERFfKpjf1azQaqNVqhIWFobGxEc8//zyio6Nx+PBhuLm5AQCSk5PxxRdfIDs7G3K5HElJSYiPj8c333wDAGhqakJsbCyUSiV2796NU6dOYfLkyXBycsJ//vMfAJce0ZSamor33nsPYWFh2Lt3L5588kn06tULDz30UJuxWVMvERERUXfoUY9Oqq6uhkKhgEajQUREBAwGA3x8fJCVlYVx48YBAMrKyhAUFAStVosRI0Zgy5YtGDt2LCorK+Hr6wsAWLlyJebPn4/q6mpIJBLcc889CA8Px5IlS8S25s6di2+//Ra7du1qMxZr6r1cfX096uvrxde1tbXw9/fHyU8PwYO9LImI6AZ0I/aytMWjk3rUPWQGgwEA4OXlBQDQ6XQwGo2IiooSywQGBqJ///7QarUAAK1Wi8GDB4tJEwDExMSgtrYWpaWlAC4lSs7OzmZtubi4YO/evTAajW3GYk29l0tPT4dcLhcnf3//zu4CIiIiugn1mISsubkZc+bMQXh4OEJCQgAAer0eEokEnp6eZmV9fX2h1+vFMi2TJtNy0zLgUiL1/vvvQ6fTQRAE7N+/H++//z6MRiN+++23NuOxpt7LpaamwmAwiNPJkyc7sQeIiIjoZtVjBoZVq9UoKSmxeAnxSvzrX/+CXq/HiBEjIAgCfH19MWXKFCxevBj29t2Xk0qlUkil0m6rj4iIiG4OPeIMWVJSEvLy8lBYWAg/Pz9xvlKpRENDA2pqaszKV1VVQalUimUu73Vpem0q4+LigtWrV+OPP/7ATz/9hIqKCgwcOBAymQw+Pj5txmRNvURERETdwaYJmSAISEpKQk5ODgoKChAQEGC2PDQ0FE5OTtixY4c4r7y8HBUVFVCpVAAAlUqFQ4cO4fTp02KZ/Px8eHh4IDg42Kw+Jycn+Pn5wcHBARs2bMDYsWMtniHrTL1EREREV8KmCZlarca6deuQlZUFmUwGvV4PvV6PixcvAgDkcjkSExORkpKCwsJC6HQ6TJs2DSqVCiNGjAAAREdHIzg4GJMmTcKBAwewbds2LFiwAGq1Wrx8+MMPP2DdunU4evQo9u7di8ceewwlJSVmw1fk5OQgMDBQfG1NvURERETdwab3kGVkZAAAIiMjzeavWbMGU6dOBQAsW7YM9vb2SEhIQH19PWJiYrBixQqxrIODA/Ly8jBr1iyoVCq4ublhypQpWLRokVimqakJr7/+OsrLy+Hk5IRRo0Zh9+7dGDhwoFjGYDCYDUprTb1ERERE3aFHjUN2ozGNY8JxyIiI6EbFcci6R4/pZXkj8xjT/5q9oURERHT96RG9LImIiIhuZkzIiIiIiGyMlyyvgYMHD8Ld3d3WYRAR0XViyJAhtg6BrjGeISMiIiKyMSZkRERERDbGhIyIiIjIxmyakKWnpyMsLAwymQwKhQJxcXFmg7MCQF1dHdRqNby9veHu7o6EhIRWz5icPXs2QkNDIZVKLV53P3jwIEaOHAlnZ2f4+/tj8eLFHcZXUVGB2NhYuLq6QqFQYN68eWhsbOzy9hIRERG1xaYJmUajgVqtxp49e5Cfnw+j0Yjo6GhcuHBBLJOcnIzc3FxkZ2dDo9GgsrIS8fHxreqaPn06xo8f32Y7tbW1iI6OxoABA6DT6bBkyRIsXLgQ7777rsXYmpqaEBsbi4aGBuzevRtr165FZmYm0tLSrnzDiYiIiFroUSP1V1dXQ6FQQKPRICIiAgaDAT4+PsjKysK4ceMAAGVlZQgKCoJWqxWfZ2mycOFCbN68GcXFxWbzMzIy8MILL0Cv10MikQAAnnvuOWzevBllZWVtxrJlyxaMHTsWlZWV8PX1BQCsXLkS8+fPR3V1tVhPe0wj/X799dfsZUlERFZjL0vbssVI/T3qHjKDwQAA8PLyAgDodDoYjUZERUWJZQIDA9G/f39otVqr69VqtYiIiDBLomJiYlBeXo6zZ89aXGfw4MFiMmZap7a2FqWlpW2uU19fj9raWrOJiIiIqCM9JiFrbm7GnDlzEB4ejpCQEAAQz2h5enqalfX19YVer7e6br1eb5ZYmeowLeuuddLT0yGXy8XJ39/f6hiJiIjo5tVjEjK1Wo2SkhJs2LDB1qF0WWpqKgwGgzidPHnS1iERERHRdaBHjNSflJSEvLw8FBUVwc/PT5yvVCrR0NCAmpoas7NkVVVVUCqVVtevVCpb9cw0vbZUj1KpxN69ezu1jlQqhVQqtTouIiIiIsDGZ8gEQUBSUhJycnJQUFCAgIAAs+WhoaFwcnLCjh07xHnl5eWoqKiASqWyuh2VSoWioiIYjUZxXn5+PgYNGoRevXpZXOfQoUM4ffq02ToeHh4IDg62um0iIiKijtg0IVOr1Vi3bh2ysrIgk8mg1+uh1+tx8eJFAIBcLkdiYiJSUlJQWFgInU6HadOmQaVSmfWwPHbsGIqLi8V1i4uLUVxcjIaGBgDAhAkTIJFIkJiYiNLSUmzcuBHLly9HSkqKWEdOTg4CAwPF19HR0QgODsakSZNw4MABbNu2DQsWLIBareZZMCIiIupWNr1kmZGRAQCIjIw0m79mzRpMnToVALBs2TLY29sjISEB9fX1iImJwYoVK8zKz5gxAxqNRnw9dOhQAMCJEycwcOBAyOVybN++HWq1GqGhoejduzfS0tIwc+ZMcR2DwWA2KK2DgwPy8vIwa9YsqFQquLm5YcqUKVi0aFF37gIiIiKinjUO2Y2G45AREVFXcBwy27LFOGQ94qb+G92dd955zd5QIiIiuv70mGEviIiIiG5WTMiIiIiIbIwJGREREZGN8R6ya+D8+TzY27vaOgwiIqI2ubvH2TqEmx7PkBERERHZGBMyIiIiIhtjQkZERERkYzZNyNLT0xEWFgaZTAaFQoG4uDiz0fIBoK6uDmq1Gt7e3nB3d0dCQkKrB4XPnj0boaGhkEqlbQ6mV1dXh6lTp2Lw4MFwdHREXFycVfGdOXMGEydOhIeHBzw9PZGYmIjz5893dXOJiIiI2mTThEyj0UCtVmPPnj3Iz8+H0WhEdHQ0Lly4IJZJTk5Gbm4usrOzodFoUFlZifj4+FZ1TZ8+HePHj2+znaamJri4uGD27NmIioqyOr6JEyeitLQU+fn5yMvLQ1FRkdnjloiIiIi6Q496dFJ1dTUUCgU0Gg0iIiJgMBjg4+ODrKwsjBs3DgBQVlaGoKAgaLVasweMA8DChQuxefNmFBcXW2xj6tSpqKmpwebNm9uN5ciRIwgODsa+ffswbNgwAMDWrVvx4IMP4pdffkHfvn1brVNfX4/6+nrxdW1tLfz9/fHrrx/Bw4O9LImIqGdiL0tztnh0Uo+6h8xgMAAAvLy8AAA6nQ5Go9HsrFZgYCD69+8PrVZ7VWPRarXw9PQUkzEAiIqKgr29Pb799ts210lPT4dcLhcnf3//qxojERER3Rh6TELW3NyMOXPmIDw8HCEhIQAAvV4PiUQCT09Ps7K+vr7Q6/VXNR69Xg+FQmE2z9HREV5eXhbbTk1NhcFgEKeTJ09e1RiJiIjoxtBjBoZVq9UoKSnBrl27bB1Kl0mlUkilUluHQURERNeZTiVk06dP77CMnZ0dVq1a1akgkpKSxJvm/fz8xPlKpRINDQ2oqakxO0tWVVUFpVLZqTY6S6lU4vTp02bzGhsbcebMmaveNhEREd1cOnXJ8uzZsxan3377DRs2bEBmZqbV9QmCgKSkJOTk5KCgoAABAQFmy0NDQ+Hk5IQdO3aI88rLy1FRUQGVStWZ0DtNpVKhpqYGOp1OnFdQUIDm5mYMHz78qrZNREREN5dOnSHLyclpc/5nn32G559/HlKpFGlpaVbXp1arkZWVhc8++wwymUy8N0sul8PFxQVyuRyJiYlISUmBl5cXPDw88PTTT0OlUpn1sDx27BjOnz8PvV6Pixcvir0sg4ODIZFIAACHDx9GQ0MDzpw5g3PnzollTOOW7d27F5MnT8aOHTvQr18/BAUF4f7778eTTz6JlStXwmg0IikpCY899libPSyJiIiIuuqKhr345ptv8Nxzz+G7775DUlISnnvuOfTq1cv6xu3s2py/Zs0aTJ06FcClQV3nzp2L9evXo76+HjExMVixYoXZZcPIyEhoNJpW9Zw4cQIDBw4EAAwcOBA///xzqzKmzd+5cydGjRplts6ZM2eQlJSE3Nxc2NvbIyEhAW+++Sbc3d2t2j5Tt1kOe0FERD0Zh70wZ4thL7qUkB0+fBjz58/H1q1bMXnyZLz00ktm937RJUzIiIjoesCEzJwtErJOXbI8efIk0tLSsG7dOowdOxYHDx5EUFDQ1YrthuHuPhbu7tfmDSUiIqLrT6cSskGDBsHOzg4pKSkIDw/H0aNHcfTo0VblHn744W4LkIiIiOhG16lLlvb2HXfKtLOzQ1NT0xUFdaOwxSlPIiIiujI9/pJlc3Pz1Yrjhrbr92q4NdTZOgwiIuqB7u2t6LgQ3fB6zKOTiIiIiG5WXUrIsrOzER8fj5CQEISEhCA+Ph6bNm3q7tiIiIiIbgqdSsiam5sxfvx4jB8/HocPH8att96KW2+9FaWlpRg/fjwee+wxXMGwZkREREQ3pU4lZMuXL8dXX32Fzz//HGVlZdi8eTM2b96M8vJy5OTkID8/H8uXL7e6vvT0dISFhUEmk0GhUCAuLg7l5eVmZerq6qBWq+Ht7Q13d3ckJCSgqqrKrMzs2bMRGhoKqVQqjrzf0s6dO/HII4+gT58+cHNzw5AhQ/DRRx91GF9FRQViY2Ph6uoKhUKBefPmobGx0ertIyIiIrJGpxKyNWvWYMmSJRg7dmyrZQ8//DAWL16M1atXW12fRqOBWq3Gnj17kJ+fD6PRiOjoaFy4cEEsk5ycjNzcXGRnZ0Oj0aCyshLx8fGt6po+fTrGjx/fZju7d+/GnXfeiU8++QQHDx7EtGnTMHnyZOTl5VmMrampCbGxsWhoaMDu3buxdu1aZGZmdurRUERERETW6NSwFy4uLigvL0f//v3bXP7zzz8jMDAQFy9e7FIw1dXVUCgU0Gg0iIiIgMFggI+PD7KysjBu3DgAQFlZGYKCgqDVas2eZwkACxcuxObNm8XnVLYnNjYWvr6+FhPILVu2YOzYsaisrISvry8AYOXKlZg/fz6qq6vFZ2S2x9Rt9ovjx+Amk3VYnoiIbj7sZdnz2GLYi06dIXNxcUFNTY3F5bW1tXB2du5yMAaDAQDg5eUFANDpdDAajYiKihLLBAYGon///tBqtV1ux9SWqZ22aLVaDB48WEzGACAmJga1tbUoLS1tc536+nrU1taaTUREREQd6VRCplKpkJGRYXH5O++8A5VK1aVAmpubMWfOHISHhyMkJAQAoNfrIZFI4OnpaVbW19cXer2+S+0AwMcff4x9+/Zh2rRpFsvo9XqzZMzUrmlZW9LT0yGXy8XJ39+/yzESERHRzaNTA8O+8MILiIyMxO+//45nn30WgYGBEAQBR44cweuvv47PPvsMhYWFXQpErVajpKQEu3bt6tL61iosLMS0adPw3nvv4Y477ujWulNTU5GSkiK+rq2tZVJGREREHepUQnbPPfdg48aNmDlzJj755BOzZb169cL69esRHh7e6SCSkpKQl5eHoqIi+Pn5ifOVSiUaGhpQU1NjdpasqqoKSqWy0+1oNBo89NBDWLZsGSZPntxuWaVSib1795rNM/XutNS2VCqFVCrtdFxERER0c+tUQgYAf/3rXxETE4Nt27aJDxa//fbbER0dDVdX107VJQgCnn76aeTk5GDnzp0ICAgwWx4aGgonJyfs2LEDCQkJAIDy8nJUVFR0+tLozp07MXbsWLz22muYOXNmh+VVKhVeeeUVnD59GgrFpRsu8/Pz4eHhgeDg4E61TURERNSeTidkAODq6oq//vWvV9y4Wq1GVlYWPvvsM8hkMvHeLLlcDhcXF8jlciQmJiIlJQVeXl7w8PDA008/DZVKZdbD8tixYzh//jz0ej0uXrwo9rIMDg6GRCJBYWEhxo4di2eeeQYJCQliOxKJRLyxPycnB6mpqSgrKwMAREdHIzg4GJMmTcLixYuh1+uxYMECqNVqngUjIiKibtWpm/q1Wm2rsbs++OADBAQEQKFQYObMmaivr7e6voyMDBgMBkRGRqJPnz7itHHjRrHMsmXLMHbsWCQkJCAiIgJKpRKffvqpWT0zZszA0KFD8b///Q8//PADhg4diqFDh6KyshIAsHbtWvzxxx9IT083a6fleGYGg8FsUFoHBwfk5eXBwcEBKpUKTzzxBCZPnoxFixZ1ZpcRERERdahT45A98MADiIyMxPz58wEAhw4dwp///GdMnToVQUFBWLJkCf7+979j4cKFVyve6wrHISMioo5wHLKexxbjkHXqkmVxcTFefvll8fWGDRswfPhwvPfeewAAf39/vPjii0zILvMXb59r9oYSERHR9adTlyzPnj1rNjaXRqPBAw88IL4OCwvDyZMnuy86IiIioptApxIyX19fnDhxAgDQ0NCA7777zuzm+nPnzsHJyal7IyQiIiK6wXUqIXvwwQfx3HPP4euvv0ZqaipcXV0xcuRIcfnBgwfxpz/9qduDJCIiIrqRdeoespdffhnx8fG499574e7ujrVr15o9ZHv16tWIjo7u9iCvd5v3/wZXd+t7nxIREVky7m4fW4dAV0GnErLevXujqKgIBoMB7u7ucHBwMFuenZ0NGXsTEhEREXVKpy5Zmsjl8lbJmCAI+Pbbb/H44493S2BEREREN4suJWQtnThxAv/617/Qv39//PWvf0VdXV13xEVERER00+hSQlZfX4+PPvoIo0ePxqBBg/Cf//wHKSkpOH36dKuR/NuTnp6OsLAwyGQyKBQKxMXFmY2WDwB1dXVQq9Xw9vaGu7s7EhISxId8m8yePRuhoaGQSqUYMmRIq3bKy8sxatQo+Pr6wtnZGbfccgsWLFgAo9HYbnwVFRWIjY2Fq6srFAoF5s2bh8bGRqu3j4iIiMganUrIdDod/vGPf0CpVOK///0v4uLicPLkSdjb2yMmJqbTg59qNBqo1Wrs2bMH+fn5MBqNiI6OxoULF8QyycnJyM3NRXZ2NjQaDSorK80eeWQyffp0jB8/vs12nJycMHnyZGzfvh3l5eX473//i/feew8vvviixdiampoQGxuLhoYG7N69G2vXrkVmZibS0tI6tY1EREREHenUo5McHR3x9NNP46mnnsKgQYPE+U5OTjhw4ACCg4OvKJjq6mooFApoNBpERETAYDDAx8cHWVlZGDduHACgrKwMQUFB0Gq1ZmOgAcDChQuxefNm8eHi7UlJScG+ffvw9ddft7l8y5YtGDt2LCorK8XBcFeuXIn58+ejurrarHepSX19vdmzPGtra+Hv74+1O36Eqzs7OxAR0ZVjL8urzxaPTurUGbIxY8Zg1apVWLRoEbZu3YpO5HJWMRgMAAAvLy8Al87IGY1GREVFiWUCAwPRv39/aLXaLrdz7NgxbN26Fffee6/FMlqtFoMHDzZ7MkFMTAxqa2tRWlra5jrp6emQy+Xi5O/v3+UYiYiI6ObRqYRs27ZtKC0txaBBgzBr1iz06dMHzzzzDADAzs7uigJpbm7GnDlzEB4ejpCQEACAXq+HRCKBp6enWVlfX1/o9fpOt3HPPffA2dkZt912G0aOHIlFixZZLKvX682SMVO7pmVtSU1NhcFgECc+RoqIiIis0emb+v39/ZGWloYTJ07gww8/RHV1NRwdHfHII4/g+eefx3fffdelQNRqNUpKSrBhw4YurW+NjRs34rvvvkNWVha++OILLF26tFvrl0ql8PDwMJuIiIiIOtKpgWEvd9999+G+++7D2bNnsW7dOqxevRqvvfYampqaOlVPUlIS8vLyUFRUBD8/P3G+UqlEQ0MDampqzM6SVVVVQalUdjpe0yXE4OBgNDU1YebMmZg7d26rMdVMbe/du9dsnql3Z1faJiIiIrLkischA4BevXrh6aefxvfff499+/ZZvZ4gCEhKSkJOTg4KCgoQEBBgtjw0NBROTk7YsWOHOK+8vBwVFRVQqVRXFHNzczOMRiOam5vbXK5SqXDo0CGcPn1anJefnw8PD48r7rxARERE1FKnErLFixfj4sWL4utvvvnGrFfhuXPn8P7771tdn1qtxrp165CVlQWZTAa9Xg+9Xi+2IZfLkZiYiJSUFBQWFkKn02HatGlQqVRmPSyPHTuG4uJicd3i4mIUFxejoaEBAPDRRx/h448/xpEjR3D8+HF8/PHHSE1Nxfjx4+Hk5AQAyMnJQWBgoFhndHQ0goODMWnSJBw4cADbtm3DggULoFarIZVKO7PbiIiIiNrVqWEvHBwccOrUKSgUCgCAh4cHiouLccsttwC4dEmvb9++Vl+ytNQRYM2aNZg6dSqASwPDzp07F+vXr0d9fT1iYmKwYsUKs8uGkZGR0Gg0reo5ceIEBg4ciI0bN2Lx4sX44YcfIAgCBgwYgCeeeALJyclwdnYGAGRmZmLatGlmPUd//vlnzJo1Czt37oSbmxumTJmCV199FY6O1l3pNXWb5bAXRETUXTjsxdVni2EvOpWQ2dvbQ6/XiwmZTCbDgQMHupyQ3eiYkBERUXdjQnb12SIhu6Kb+sk6ccN6s8clERERWdQtN/UTERERUdd1+gzZ+++/D3d3dwBAY2MjMjMz0bt3bwCXbuonIiIios7p1D1kAwcOtGpE/hMnTlxRUDcK0zXonze9Bg83F1uHQ0REPZzn/U/bOgTCdXAP2U8//XSVwiAiIiK6eXXqHjKtVou8vDyzeR988AECAgKgUCgwc+ZMs3HJiIiIiKhjnUrIXnrpJZSWloqvDx06hMTERERFReG5555Dbm4u0tPTuz1IIiIiohtZpxKyAwcOYMyYMeLrDRs2YPjw4XjvvfeQkpKCN998Ex9//LHV9aWnpyMsLAwymQwKhQJxcXEoLy83K1NXVwe1Wg1vb2+4u7sjISFBfKakyezZsxEaGgqpVIohQ4a02+axY8cgk8nMno1pSUVFBWJjY+Hq6gqFQoF58+ahsbHR6u0jIiIiskanErKzZ8/C19dXfK3RaPDAAw+Ir8PCwnDy5Emr69NoNFCr1dizZw/y8/NhNBoRHR2NCxcuiGWSk5ORm5uL7OxsaDQaVFZWIj4+vlVd06dPx/jx49ttz2g04vHHH8fIkSM7jK2pqQmxsbFoaGjA7t27sXbtWmRmZiItLc3q7SMiIiKyRqdu6vf19cWJEyfg7++PhoYGfPfdd3jppZfE5efOnROfDWmNrVu3mr3OzMyEQqGATqdDREQEDAYDVq1ahaysLIwePRrApccqBQUFYc+ePeLzLN98800AQHV1NQ4ePGixvQULFiAwMBBjxozB7t27241t+/btOHz4ML766iv4+vpiyJAhePnllzF//nwsXLgQEonE6u0kIiIiak+nzpA9+OCDeO655/D1118jNTUVrq6uZmebDh48iD/96U9dDsZgMAAAvLy8AAA6nQ5GoxFRUVFimcDAQPTv3x9arbZTdRcUFCA7OxvvvPOOVeW1Wi0GDx5sdkYwJiYGtbW1ZvfRtVRfX4/a2lqziYiIiKgjnUrIXn75ZTg6OuLee+/Fe++9h/fee8/sTNHq1asRHR3dpUCam5sxZ84chIeHIyQkBACg1+shkUha3e/l6+sLvV5vdd2///47pk6diszMTKvHE9Hr9WbJmKld07K2pKenQy6Xi5O/v7/VMRIREdHNq1OXLHv37o2ioiIYDAa4u7vDwcHBbHl2drY4in9nqdVqlJSUYNeuXV1avz1PPvkkJkyYgIiIiG6vu6XU1FSkpKSIr2tra5mUERERUYe69CxLuVzeKhkDLl1q7Mq9VUlJScjLy0NhYSH8/PzE+UqlEg0NDaipqTErX1VVBaVSaXX9BQUFWLp0KRwdHeHo6IjExEQYDAY4Ojpi9erVba6jVCpb9eY0vbbUtlQqhYeHh9lERERE1BGbPlxcEAQkJSUhJycHBQUFCAgIMFseGhoKJycn7NixQ5xXXl6OiooKqFQqq9vRarUoLi4Wp0WLFkEmk6G4uBh//etf21xHpVLh0KFDOH36tDgvPz8fHh4eCA4O7uSWEhEREVnW6YeLdye1Wo2srCx89tlnkMlk4r1ZcrkcLi4ukMvlSExMREpKCry8vODh4YGnn34aKpVK7GEJXBpb7Pz589Dr9bh48SKKi4sBAMHBwZBIJAgKCjJrd//+/bC3txfvVQOAnJwcpKamoqysDAAQHR2N4OBgTJo0CYsXL4Zer8eCBQugVqshlUqv8p4hIiKim4lNE7KMjAwAQGRkpNn8NWvWYOrUqQCAZcuWwd7eHgkJCaivr0dMTAxWrFhhVn7GjBnQaDTi66FDhwK49JDzgQMHWhWLwWAwG5TWwcEBeXl5mDVrFlQqFdzc3DBlyhQsWrSok1tJRERE1D47QRAEWwdxozI9Lf7nTa/Bw83F1uEQEVEP53n/07YOgfB/v98Gg+Ga3Q9u0zNkNwvP+57iDf5ERERkkU1v6iciIiIiJmRERERENseEjIiIiMjGeA/ZNbD6x01wcXe1dRhERGQDf7/tMVuHQNcBniEjIiIisjEmZEREREQ2ZtOELD09HWFhYZDJZFAoFIiLizMbnBUA6urqoFar4e3tDXd3dyQkJLR6xuTs2bMRGhoKqVSKIUOGtGrnp59+gp2dXatpz5497cZXUVGB2NhYuLq6QqFQYN68eWhsbLzi7SYiIiJqyaYJmUajgVqtxp49e5Cfnw+j0Yjo6GhcuHBBLJOcnIzc3FxkZ2dDo9GgsrIS8fHxreqaPn06xo8f3257X331FU6dOiVOoaGhFss2NTUhNjYWDQ0N2L17N9auXYvMzEykpaV1fYOJiIiI2mDTm/q3bt1q9jozMxMKhQI6nQ4REREwGAxYtWoVsrKyMHr0aACXHqsUFBSEPXv2iM+zfPPNNwEA1dXVOHjwoMX2vL29oVQqrYpt+/btOHz4ML766iv4+vpiyJAhePnllzF//nwsXLgQEomkK5tMRERE1EqPuofMYDAAALy8vAAAOp0ORqMRUVFRYpnAwED0798fWq220/U//PDDUCgU+Mtf/oLPP/+83bJarRaDBw+Gr6+vOC8mJga1tbUoLS1tc536+nrU1taaTUREREQd6TEJWXNzM+bMmYPw8HCEhIQAAPR6PSQSCTw9Pc3K+vr6Qq/XW123u7s7Xn/9dWRnZ+OLL77AX/7yF8TFxbWblOn1erNkzNSuaVlb0tPTIZfLxcnf39/qGImIiOjm1WPGIVOr1SgpKcGuXbu6ve7evXsjJSVFfB0WFobKykosWbIEDz/8cLe1k5qaatZObW0tkzIiIiLqUI84Q5aUlIS8vDwUFhbCz89PnK9UKtHQ0ICamhqz8lVVVVbfC2bJ8OHDcezYMYvLlUplq96cpteW2pZKpfDw8DCbiIiIiDpi04RMEAQkJSUhJycHBQUFCAgIMFseGhoKJycn7NixQ5xXXl6OiooKqFSqK2q7uLgYffr0sbhcpVLh0KFDOH36tDgvPz8fHh4eCA4OvqK2iYiIiFqy6SVLtVqNrKwsfPbZZ5DJZOK9WXK5HC4uLpDL5UhMTERKSgq8vLzg4eGBp59+GiqVSuxhCQDHjh3D+fPnodfrcfHiRRQXFwMAgoODIZFIsHbtWkgkEgwdOhQA8Omnn2L16tV4//33xTpycnKQmpqKsrIyAEB0dDSCg4MxadIkLF68GHq9HgsWLIBarYZUKr1Ge4iIiIhuBjZNyDIyMgAAkZGRZvPXrFmDqVOnAgCWLVsGe3t7JCQkoL6+HjExMVixYoVZ+RkzZkCj0YivTYnXiRMnMHDgQADAyy+/jJ9//hmOjo4IDAzExo0bMW7cOHEdg8FgNiitg4MD8vLyMGvWLKhUKri5uWHKlClYtGhRd20+EREREQDAThAEwdZB3Khqa2shl8ux7LtVfLg4EdFNig8Xv/6Yfr8NBsM1ux+8R9zUT0RERHQz6zHDXtzIpv9pHHtcEhERkUU8Q0ZERERkY0zIiIiIiGyMlyyvgfObP4G9K2/qJyKia8t93Hhbh0BW4hkyIiIiIhtjQkZERERkY0zIiIiIiGzMpglZeno6wsLCIJPJoFAoEBcXZzZaPgDU1dVBrVbD29sb7u7uSEhIaPXQ79mzZyM0NBRSqRRDhgxpsy1BELB06VLcfvvtkEql6NevH1555ZV24ztz5gwmTpwIDw8PeHp6IjExEefPn7+ibSYiIiK6nE0TMo1GA7VajT179iA/Px9GoxHR0dG4cOGCWCY5ORm5ubnIzs6GRqNBZWUl4uPjW9U1ffp0jB9v+ebFZ555Bu+//z6WLl2KsrIyfP7557j77rvbjW/ixIkoLS1Ffn4+8vLyUFRUhJkzZ3Z9g4mIiIja0KMenVRdXQ2FQgGNRoOIiAgYDAb4+PggKytLfO5kWVkZgoKCoNVqzR4wDgALFy7E5s2bxYeLmxw5cgR33nknSkpKMGjQIKtiOXLkCIKDg7Fv3z4MGzYMALB161Y8+OCD+OWXX9C3b98O6zA9euHXtavhwV6WRER0jbGXZdfc9I9OMhgMAAAvLy8AgE6ng9FoRFRUlFgmMDAQ/fv3h1artbre3Nxc3HLLLcjLy0NAQAAGDhyIGTNm4MyZMxbX0Wq18PT0FJMxAIiKioK9vT2+/fbbNtepr69HbW2t2URERETUkR6TkDU3N2POnDkIDw9HSEgIAECv10MikcDT09OsrK+vL/R6vdV1Hz9+HD///DOys7PxwQcfIDMzEzqdTjzr1ha9Xg+FQmE2z9HREV5eXhbbTk9Ph1wuFyd/f3+rYyQiIqKbV48ZGFatVqOkpAS7du3q9rqbm5tRX1+PDz74ALfffjsAYNWqVQgNDUV5ebnVlzE7kpqaipSUFPF1bW0tkzIiIiLqUI84Q5aUlIS8vDwUFhbCz89PnK9UKtHQ0ICamhqz8lVVVVAqlVbX36dPHzg6OorJGAAEBQUBACoqKtpcR6lU4vTp02bzGhsbcebMGYttS6VSeHh4mE1EREREHbFpQiYIApKSkpCTk4OCggIEBASYLQ8NDYWTkxN27NghzisvL0dFRQVUKpXV7YSHh6OxsRE//vijOO+HH34AAAwYMKDNdVQqFWpqaqDT6cR5BQUFaG5uxvDhw61um4iIiKgjNr1kqVarkZWVhc8++wwymUy8N0sul8PFxQVyuRyJiYlISUmBl5cXPDw88PTTT0OlUpn1sDx27BjOnz8PvV6Pixcvir0sg4ODIZFIEBUVhT//+c+YPn06/vvf/6K5uRlqtRr33XefeNZs7969mDx5Mnbs2IF+/fohKCgI999/P5588kmsXLkSRqMRSUlJeOyxx6zqYUlERERkLZsmZBkZGQCAyMhIs/lr1qzB1KlTAQDLli2Dvb09EhISUF9fj5iYGKxYscKs/IwZM6DRaMTXQ4cOBQCcOHECAwcOhL29PXJzc/H0008jIiICbm5ueOCBB/D666+L6/zxxx8oLy+H0WgU53300UdISkrCmDFjxBjefPPN7twFRERERD1rHLIbDcchIyIiW+I4ZF1ji3HIekwvyxuZe1wC3HmDPxEREVnQI3pZEhEREd3MmJARERER2RgTMiIiIiIb4z1k18DhPXVwd5PYOgwiIqJuExLubOsQbig8Q0ZERERkY0zIiIiIiGzMpglZeno6wsLCIJPJoFAoEBcXh/LycrMydXV1UKvV8Pb2hru7OxISElBVVWVWZvbs2QgNDYVUKsWQIUNatbNw4ULY2dm1mtzc3NqNr6KiArGxsXB1dYVCocC8efPQ2Nh4xdtNRERE1JJNEzKNRgO1Wo09e/YgPz8fRqMR0dHRuHDhglgmOTkZubm5yM7OhkajQWVlJeLj41vVNX36dIwf3/YAeM8++yxOnTplNgUHB+Nvf/ubxdiampoQGxuLhoYG7N69G2vXrkVmZibS0tKufMOJiIiIWuhRI/VXV1dDoVBAo9EgIiICBoMBPj4+yMrKwrhx4wAAZWVlCAoKglarNXueJXDpTNjmzZvFZ1lacuDAAQwZMgRFRUUYOXJkm2W2bNmCsWPHorKyEr6+vgCAlStXYv78+aiuroZE0vFN+qaRfrXbquDuxoFhiYjoxnEj39Rvi5H6e9Q9ZAaDAQDg5eUFANDpdDAajYiKihLLBAYGon///tBqtV1u5/3338ftt99uMRkDAK1Wi8GDB4vJGADExMSgtrYWpaWlba5TX1+P2tpas4mIiIioIz0mIWtubsacOXMQHh6OkJAQAIBer4dEIoGnp6dZWV9fX+j1+i61U1dXh48++giJiYntltPr9WbJmKld07K2pKenQy6Xi5O/v3+XYiQiIqKbS49JyNRqNUpKSrBhw4ar2k5OTg7OnTuHKVOmdHvdqampMBgM4nTy5Mlub4OIiIhuPD1iYNikpCTk5eWhqKgIfn5+4nylUomGhgbU1NSYnSWrqqqCUqnsUlvvv/8+xo4d2+rs1+WUSiX27t1rNs/Uu9NS21KpFFKptEtxERER0c3LpmfIBEFAUlIScnJyUFBQgICAALPloaGhcHJywo4dO8R55eXlqKiogEql6nR7J06cQGFhYYeXKwFApVLh0KFDOH36tDgvPz8fHh4eCA4O7nTbRERERJbYNCFTq9VYt24dsrKyIJPJoNfrodfrcfHiRQCAXC5HYmIiUlJSUFhYCJ1Oh2nTpkGlUpn1sDx27BiKi4vFdYuLi1FcXIyGhgaz9lavXo0+ffrggQceaBVLTk4OAgMDxdfR0dEIDg7GpEmTcODAAWzbtg0LFiyAWq3mWTAiIiLqVja9ZJmRkQEAiIyMNJu/Zs0aTJ06FQCwbNky2NvbIyEhAfX19YiJicGKFSvMys+YMQMajUZ8PXToUACXzogNHDgQwKVOA5mZmZg6dSocHBxaxWIwGMwGpXVwcEBeXh5mzZoFlUoFNzc3TJkyBYsWLbrSzSYiIiIy06PGIbvRcBwyIiK6UXEcsu7VI27qv9EFj3CGh8eN+8ElIiKiK9Njhr0gIiIiulkxISMiIiKyMSZkRERERDbGe8iugfLCjXB3c7F1GEREdJ0LinrC1iHQVcIzZEREREQ2xoSMiIiIyMaYkBERERHZmE0TsvT0dISFhUEmk0GhUCAuLs5stHwAqKurg1qthre3N9zd3ZGQkCA+5Ntk9uzZCA0NhVQqxZAhQ9psa9u2bRgxYgRkMhl8fHyQkJCAn376qd34zpw5g4kTJ8LDwwOenp5ITEzE+fPnr2STiYiIiFqxaUKm0WigVquxZ88e5Ofnw2g0Ijo6GhcuXBDLJCcnIzc3F9nZ2dBoNKisrER8fHyruqZPn47x48e32c6JEyfwyCOPYPTo0SguLsa2bdvw22+/tVlPSxMnTkRpaSny8/ORl5eHoqIizJw588o2moiIiOgyPerRSdXV1VAoFNBoNIiIiIDBYICPjw+ysrIwbtw4AEBZWRmCgoKg1WrNHjAOAAsXLsTmzZtRXFxsNn/Tpk14/PHHUV9fD3v7Szlobm4uHnnkEdTX18PJyalVLEeOHEFwcDD27duHYcOGAQC2bt2KBx98EL/88gv69u3b4faYHr2wd/O77GVJRERXjL0srw1bPDqpR91DZjAYAABeXl4AAJ1OB6PRiKioKLFMYGAg+vfvD61Wa3W9oaGhsLe3x5o1a9DU1ASDwYAPP/wQUVFRbSZjAKDVauHp6SkmYwAQFRUFe3t7fPvtt22uU19fj9raWrOJiIiIqCM9JiFrbm7GnDlzEB4ejpCQEACAXq+HRCKBp6enWVlfX1/o9Xqr6w4ICMD27dvx/PPPQyqVwtPTE7/88gs+/vhji+vo9XooFAqzeY6OjvDy8rLYdnp6OuRyuTj5+/tbHSMRERHdvHpMQqZWq1FSUoINGzZ0e916vR5PPvkkpkyZgn379kGj0UAikWDcuHHoziu2qampMBgM4nTy5Mluq5uIiIhuXD1ipP6kpCTxpnk/Pz9xvlKpRENDA2pqaszOklVVVUGpVFpd/zvvvAO5XI7FixeL89atWwd/f398++23re5FM7V9+vRps3mNjY04c+aMxbalUimkUqnVcREREREBNj5DJggCkpKSkJOTg4KCAgQEBJgtDw0NhZOTE3bs2CHOKy8vR0VFBVQqldXt/PHHH+LN/CYODg4ALl0qbYtKpUJNTQ10Op04r6CgAM3NzRg+fLjVbRMRERF1xKYJmVqtxrp165CVlQWZTAa9Xg+9Xo+LFy8CAORyORITE5GSkoLCwkLodDpMmzYNKpXK7KzWsWPHUFxcLK5bXFyM4uJiNDQ0AABiY2Oxb98+LFq0CEePHsV3332HadOmYcCAARg6dCgAYO/evQgMDMSvv/4KAAgKCsL999+PJ598Env37sU333yDpKQkPPbYY1b1sCQiIiKylk0vWWZkZAAAIiMjzeavWbMGU6dOBQAsW7YM9vb2SEhIQH19PWJiYrBixQqz8jNmzIBGoxFfm5KsEydOYODAgRg9ejSysrKwePFiLF68GK6urlCpVNi6dStcXC4NR/HHH3+gvLwcRqNRrOejjz5CUlISxowZI8bw5ptvdvduICIioptcjxqH7EbDcciIiKg7cRyya8MW45D1iJv6b3SDRo2/Zm8oERERXX96zLAXRERERDcrJmRERERENsaEjIiIiMjGeA/ZNVC7owJwk9k6DCIisgGP6AG2DoGuAzxDRkRERGRjTMiIiIiIbMymCVl6ejrCwsIgk8mgUCgQFxeH8vJyszJ1dXVQq9Xw9vaGu7s7EhISUFVVZVZm9uzZCA0NhVQqxZAhQ9ps6+OPP8aQIUPg6uqKAQMGYMmSJR3Gd+bMGUycOBEeHh7w9PREYmIizp8/3+XtJSIiImqLTRMyjUYDtVqNPXv2ID8/H0ajEdHR0bhw4YJYJjk5Gbm5ucjOzoZGo0FlZSXi4+Nb1TV9+nSMHz++zXa2bNmCiRMn4qmnnkJJSQlWrFiBZcuW4e233243vokTJ6K0tBT5+fniw89nzpx5ZRtNREREdJkeNVJ/dXU1FAoFNBoNIiIiYDAY4OPjg6ysLIwbNw4AUFZWhqCgIGi1WrPnWQLAwoULsXnzZhQXF5vNnzBhAoxGI7Kzs8V5b731FhYvXoyKigrY2dm1iuXIkSMIDg7Gvn37MGzYMADA1q1b8eCDD+KXX36x6nmWppF+T356CB68qZ+I6KbEm/qvP7YYqb9H3UNmMBgAAF5eXgAAnU4Ho9GIqKgosUxgYCD69+8PrVZrdb319fVwdnY2m+fi4oJffvkFP//8c5vraLVaeHp6iskYAERFRcHe3h7ffvutxXZqa2vNJiIiIqKO9JiErLm5GXPmzEF4eDhCQkIAAHq9HhKJBJ6enmZlfX19odfrra47JiYGn376KXbs2IHm5mb88MMPeP311wEAp06danMdvV4PhUJhNs/R0RFeXl4W205PT4dcLhcnf39/q2MkIiKim1ePScjUajVKSkqwYcOGbq/7ySefRFJSEsaOHQuJRIIRI0bgscceAwDY23ffLkhNTYXBYBCnkydPdlvdREREdOPqEQlZUlIS8vLyUFhYCD8/P3G+UqlEQ0MDampqzMpXVVVBqVRaXb+dnR1ee+01nD9/Hj///DP0ej3uvvtuAMAtt9zS5jpKpRKnT582m9fY2IgzZ85YbFsqlcLDw8NsIiIiIuqITRMyQRCQlJSEnJwcFBQUICAgwGx5aGgonJycsGPHDnFeeXk5KioqoFKpOt2eg4MD+vXrB4lEgvXr10OlUsHHx6fNsiqVCjU1NdDpdOK8goICNDc3Y/jw4Z1um4iIiMgSmz46Sa1WIysrC5999hlkMpl4b5ZcLoeLiwvkcjkSExORkpICLy8veHh44Omnn4ZKpTLrYXns2DGcP38eer0eFy9eFHtZBgcHQyKR4LfffsOmTZsQGRmJuro6rFmzRhxGw2Tv3r2YPHkyduzYgX79+iEoKAj3338/nnzySaxcuRJGoxFJSUl47LHHrOphSURERGQtmyZkGRkZAIDIyEiz+WvWrMHUqVMBAMuWLYO9vT0SEhJQX1+PmJgYrFixwqz8jBkzzJKroUOHAgBOnDiBgQMHAgDWrl2LZ599FoIgQKVSYefOneJlSwD4448/UF5eDqPRKM776KOPkJSUhDFjxogxvPnmm921+UREREQAetg4ZDcajkNGREQch+z6Y4txyGx6huxm4TGmP2/wJyIiIot6RC9LIiIiopsZEzIiIiIiG2NCRkRERGRjvIfsGjh48CDc3d1tHQYREXWTIUOG2DoEusHwDBkRERGRjTEhIyIiIrIxJmRERERENmbThCw9PR1hYWGQyWRQKBSIi4tDeXm5WZm6ujqo1Wp4e3vD3d0dCQkJqKqqEpcfOHAAjz/+OPz9/eHi4oKgoCAsX768VVs7d+7En//8Z0ilUtx6663IzMzsML6DBw9i5MiRcHZ2hr+/PxYvXnzF20xERER0OZsmZBqNBmq1Gnv27EF+fj6MRiOio6Nx4cIFsUxycjJyc3PFZ09WVlYiPj5eXK7T6aBQKLBu3TqUlpbihRdeQGpqKt5++22xzIkTJxAbG4tRo0ahuLgYc+bMwYwZM7Bt2zaLsdXW1iI6OhoDBgyATqfDkiVLsHDhQrz77rtXZ2cQERHRTatHPTqpuroaCoUCGo0GERERMBgM8PHxQVZWFsaNGwcAKCsrQ1BQELRardkDxltSq9U4cuQICgoKAADz58/HF198gZKSErHMY489hpqaGmzdurXNOjIyMvDCCy9Ar9dDIpEAAJ577jls3rwZZWVlVm2P6dELX3/9NXtZEhHdQNjL8sZmi0cn9ah7yAwGAwDAy8sLwKWzX0ajEVFRUWKZwMBA9O/fH1qttt16THUAgFarNasDAGJiYtqtQ6vVIiIiQkzGTOuUl5fj7Nmzba5TX1+P2tpas4mIiIioIz0mIWtubsacOXMQHh6OkJAQABDPTnl6epqV9fX1hV6vb7Oe3bt3Y+PGjZg5c6Y4T6/Xw9fXt1UdtbW1uHjxYpv1WFrHtKwt6enpkMvl4uTv7295g4mIiIj+vx6TkKnVapSUlGDDhg1drqOkpASPPPIIXnzxRURHR3djdNZJTU2FwWAQp5MnT17zGIiIiOj60yNG6k9KSkJeXh6Kiorg5+cnzlcqlWhoaEBNTY3ZWbKqqioolUqzOg4fPowxY8Zg5syZWLBggdkypVJp1jPTVIeHhwdcXFzajMnSOqZlbZFKpZBKpe1vLBEREdFlbHqGTBAEJCUlIScnBwUFBQgICDBbHhoaCicnJ+zYsUOcV15ejoqKCqhUKnFeaWkpRo0ahSlTpuCVV15p1Y5KpTKrAwDy8/PN6mhrnaKiIhiNRrN1Bg0ahF69enV6W4mIiIgssWlCplarsW7dOmRlZUEmk0Gv10Ov14v3dcnlciQmJiIlJQWFhYXQ6XSYNm0aVCqV2MOypKQEo0aNQnR0NFJSUsQ6qqurxXaeeuopHD9+HP/85z9RVlaGFStW4OOPP0ZycrJY5u2338aYMWPE1xMmTIBEIkFiYiJKS0uxceNGLF++HCkpKddo7xAREdHNwqaXLDMyMgAAkZGRZvPXrFmDqVOnAgCWLVsGe3t7JCQkoL6+HjExMVixYoVYdtOmTaiursa6deuwbt06cf6AAQPw008/AQACAgLwxRdfIDk5GcuXL4efnx/ef/99xMTEiOV/++03/Pjjj+JruVyO7du3Q61WIzQ0FL1790ZaWppZZwEiIiKi7tCjxiG70XAcMiKiGxPHIbux2WIcsh5xU/+N7s4777xmbygRERFdf3rMsBdERERENysmZEREREQ2xoSMiIiIyMZ4D9k1cP58HuztXW0dBhERUY/g7h5n6xB6HJ4hIyIiIrIxJmRERERENmbThCw9PR1hYWGQyWRQKBSIi4tDeXm5WZm6ujqo1Wp4e3vD3d0dCQkJZs+YPHDgAB5//HH4+/vDxcUFQUFBWL58uVkdp06dwoQJE3D77bfD3t4ec+bMsSq+iooKxMbGwtXVFQqFAvPmzUNjY+MVbzcRERFRSzZNyDQaDdRqNfbs2YP8/HwYjUZER0fjwoULYpnk5GTk5uYiOzsbGo0GlZWViI+PF5frdDooFAqsW7cOpaWleOGFF5Camoq3335bLFNfXw8fHx8sWLAAd911l1WxNTU1ITY2Fg0NDdi9ezfWrl2LzMxMpKWldd8OICIiIkIPG6m/uroaCoUCGo0GERERMBgM8PHxQVZWFsaNGwcAKCsrQ1BQELRarfg8y8up1WocOXIEBQUFrZZFRkZiyJAh+O9//9tuLFu2bMHYsWNRWVkJX19fAMDKlSsxf/58VFdXQyKRdLg9ppF+f/31I3h48KZ+IiIioOff1G+Lkfp71D1kBoMBAODl5QXg0tkvo9GIqKgosUxgYCD69+8PrVbbbj2mOrpKq9Vi8ODBYjIGADExMaitrUVpaWmb69TX16O2ttZsIiIiIupIj0nImpubMWfOHISHhyMkJAQAoNfrIZFI4OnpaVbW19cXer2+zXp2796NjRs3XvFDwPV6vVkyZmrXtKwt6enpkMvl4uTv739FMRAREdHNocckZGq1GiUlJdiwYUOX6ygpKcEjjzyCF198EdHR0d0YnXVSU1NhMBjE6eTJk9c8BiIiIrr+9IiBYZOSkpCXl4eioiL4+fmJ85VKJRoaGlBTU2N2lqyqqgpKpdKsjsOHD2PMmDGYOXMmFixYcMUxKZVK7N2712yeqXfn5W2bSKVSSKXSK26biIiIbi42PUMmCAKSkpKQk5ODgoICBAQEmC0PDQ2Fk5MTduzYIc4rLy9HRUUFVCqVOK+0tBSjRo3ClClT8Morr3RLbCqVCocOHcLp06fFefn5+fDw8EBwcHC3tEFEREQE2PgMmVqtRlZWFj777DPIZDLx3iy5XA4XFxfI5XIkJiYiJSUFXl5e8PDwwNNPPw2VSiX2sCwpKcHo0aMRExODlJQUsQ4HBwf4+PiIbRUXFwMAzp8/j+rqahQXF0MikYjJVU5ODlJTU1FWVgYAiI6ORnBwMCZNmoTFixdDr9djwYIFUKvVPAtGRERE3cqmw17Y2dm1OX/NmjWYOnUqgEsDw86dOxfr169HfX09YmJisGLFCvGy4cKFC/HSSy+1qmPAgAH46aef2m2rZZnMzExMmzYNLXfHzz//jFmzZmHnzp1wc3PDlClT8Oqrr8LR0bo8lsNeEBERtcZhL1rrUeOQ3WiYkBEREbXGhKy1HnFT/43O3X0s3N2vzRtKRERE158eM+wFERER0c2KCRkRERGRjTEhIyIiIrIx3kN2Dez6vRpuDXW2DoOIiGzs3t4KW4dAPRTPkBERERHZGBMyIiIiIhtjQkZERERkYzZNyNLT0xEWFgaZTAaFQoG4uDiUl5eblamrq4NarYa3tzfc3d2RkJAgPuQbAA4cOIDHH38c/v7+cHFxQVBQEJYvX25Wx6effor77rsPPj4+8PDwgEqlwrZt2zqM7+DBgxg5ciScnZ3h7++PxYsXd8+GExEREbVg04RMo9FArVZjz549yM/Ph9FoRHR0NC5cuCCWSU5ORm5uLrKzs6HRaFBZWYn4+HhxuU6ng0KhwLp161BaWooXXngBqampePvtt8UyRUVFuO+++/Dll19Cp9Nh1KhReOihh/D9999bjK22thbR0dEYMGAAdDodlixZgoULF+Ldd9+9OjuDiIiIblo96tFJ1dXVUCgU0Gg0iIiIgMFggI+PD7KysjBu3DgAQFlZGYKCgqDVasUHjF9OrVbjyJEjKCgosNjWHXfcgfHjxyMtLa3N5RkZGXjhhReg1+shkUgAAM899xw2b94sPoD8cvX19aivrxdf19bWwt/fH18cPwY3mcyqfUBERDcu9rK8Ptji0Uk96h4yg8EAAPDy8gJw6eyX0WhEVFSUWCYwMBD9+/eHVqtttx5THW1pbm7GuXPn2i2j1WoREREhJmMAEBMTg/Lycpw9e7bNddLT0yGXy8XJ39/fYv1EREREJj0mIWtubsacOXMQHh6OkJAQABDPTnl6epqV9fX1hV6vb7Oe3bt3Y+PGjZg5c6bFtpYuXYrz58/j0UcftVhGr9fD19e3VbumZW1JTU2FwWAQp5MnT1qsn4iIiMikxwwMq1arUVJSgl27dnW5jpKSEjzyyCN48cUXER0d3WaZrKwsvPTSS/jss8+gUHTvqWOpVAqpVNqtdRIREdGNr0ecIUtKSkJeXh4KCwvh5+cnzlcqlWhoaEBNTY1Z+aqqKiiVSrN5hw8fxpgxYzBz5kwsWLCgzXY2bNiAGTNm4OOPPza7DNoWpVJp1pvT1K5pGREREVF3sWlCJggCkpKSkJOTg4KCAgQEBJgtDw0NhZOTE3bs2CHOKy8vR0VFBVQqlTivtLQUo0aNwpQpU/DKK6+02db69esxbdo0rF+/HrGxsR3GplKpUFRUBKPRKM7Lz8/HoEGD0KtXr85uKhEREZFFNk3I1Go11q1bh6ysLMhkMuj1euj1ely8eBEAIJfLkZiYiJSUFBQWFkKn02HatGlQqVRiD8uSkhKMGjUK0dHRSElJEeuorq4W28nKysLkyZPx+uuvY/jw4WIZUycCAHj77bcxZswY8fWECRMgkUiQmJiI0tJSbNy4EcuXL0dKSso12jtERER0s7BpQpaRkQGDwYDIyEj06dNHnDZu3CiWWbZsGcaOHYuEhARERERAqVTi008/FZdv2rQJ1dXVWLdunVkdYWFhYpl3330XjY2NUKvVZmWeeeYZscxvv/2GH3/8UXwtl8uxfft2nDhxAqGhoZg7dy7S0tLa7SxARERE1BU9ahyyG41pHBOOQ0ZERADHIbte2GIcsh7Ty/JG9hdvn2v2hhIREdH1hwnZVWQ6+VhbW2vjSIiIiMhapt/ta3kRkQnZVfT7778DAEfsJyIiug6dO3cOcrn8mrTFhOwqMj2aqaKi4pq9odcz07M/T548yUu8VuI+6zzus87h/uo87rPO62n7TBAEnDt3Dn379r1mbTIhu4rs7S91YpXL5T3iA3a98PDw4P7qJO6zzuM+6xzur87jPuu8nrTPrvWJlB4xUj8RERHRzYwJGREREZGNMSG7iqRSKV588UU+cNxK3F+dx33WedxnncP91XncZ53HfcaBYYmIiIhsjmfIiIiIiGyMCRkRERGRjTEhIyIiIrIxJmRERERENsaE7Cp55513MHDgQDg7O2P48OHYu3evrUPqsRYuXAg7OzuzKTAw0NZh9ShFRUV46KGH0LdvX9jZ2WHz5s1mywVBQFpaGvr06QMXFxdERUXh6NGjtgm2B+hof02dOrXVZ+7++++3TbA9RHp6OsLCwiCTyaBQKBAXF4fy8nKzMnV1dVCr1fD29oa7uzsSEhJQVVVlo4hty5r9FRkZ2epz9tRTT9koYtvLyMjAnXfeKQ7+qlKpsGXLFnH5zf75YkJ2FWzcuBEpKSl48cUX8d133+Guu+5CTEwMTp8+bevQeqw77rgDp06dEqddu3bZOqQe5cKFC7jrrrvwzjvvtLl88eLFePPNN7Fy5Up8++23cHNzQ0xMDOrq6q5xpD1DR/sLAO6//36zz9z69euvYYQ9j0ajgVqtxp49e5Cfnw+j0Yjo6GhcuHBBLJOcnIzc3FxkZ2dDo9GgsrIS8fHxNozadqzZXwDw5JNPmn3OFi9ebKOIbc/Pzw+vvvoqdDod9u/fj9GjR+ORRx5BaWkpAH6+IFC3u/vuuwW1Wi2+bmpqEvr27Sukp6fbMKqe68UXXxTuuusuW4dx3QAg5OTkiK+bm5sFpVIpLFmyRJxXU1MjSKVSYf369TaIsGe5fH8JgiBMmTJFeOSRR2wSz/Xi9OnTAgBBo9EIgnDpM+Xk5CRkZ2eLZY4cOSIAELRara3C7DEu31+CIAj33nuv8Mwzz9guqOtAr169hPfff5+fL0EQeIasmzU0NED3/9q7v5Am3z4M4Nf056OWpi7NbcrmdDUpNcJwjcgDZ+qC0OrAskBLCmoGKv3BwGwVdNqfg47KTpQo0QIprEw9sg6CYRJKLkUsFyRo/ikVvd+DauSbv+p9Me+Z1weEce8Rrt18Dy59nj3PixfIzMz0rvn5+SEzMxPt7e0Sk/m2169fQ6fTIT4+Hvv370d/f7/sSEtGb28vPB7PnJkLCwuDxWLhzP1Ea2sr1qxZA7PZjKNHj2JoaEh2JJ8yMjICAFCr1QCAFy9eYHp6es6cJSYmQq/Xc87w4359U1NTg8jISCQlJaGiogITExMy4vmcmZkZ3L59G+Pj47BarZwv8OHiC+7Dhw+YmZlBdHT0nPXo6Gh0dXVJSuXbLBYLbt26BbPZjMHBQTidTmzbtg2dnZ0IDQ2VHc/neTweAJh35r69R3Pl5ORg9+7dMBqNcLvdOHPmDOx2O9rb2+Hv7y87nnSzs7MoLS3F1q1bkZSUBODLnCmKgvDw8DnHcs7m3y8AKCgogMFggE6nQ0dHB06fPo3u7m7U19dLTCvXy5cvYbVa8fnzZ4SEhKChoQHr16+Hy+Va9vPFQkbS2e127+uUlBRYLBYYDAbcuXMHxcXFEpPR32rv3r3e18nJyUhJSUFCQgJaW1ths9kkJvMNDocDnZ2dvJbzN/3bfh05csT7Ojk5GVqtFjabDW63GwkJCYsd0yeYzWa4XC6MjIygrq4OhYWFaGtrkx3LJ/CU5QKLjIyEv7//D98Mef/+PTQajaRUS0t4eDjWrVuHnp4e2VGWhG9zxZn7/8XHxyMyMpIzB6CkpASNjY1oaWlBbGysd12j0WBqagrDw8Nzjl/uc/Zv+zUfi8UCAMt6zhRFgclkQmpqKi5duoSNGzfiypUrnC+wkC04RVGQmpqK5uZm79rs7Cyam5thtVolJls6xsbG4Ha7odVqZUdZEoxGIzQazZyZ+/jxI54/f86Z+00DAwMYGhpa1jMnhEBJSQkaGhrw9OlTGI3GOe+npqYiICBgzpx1d3ejv79/Wc7Zr/ZrPi6XCwCW9Zz9t9nZWUxOTnK+wFOWf0R5eTkKCwuxefNmpKWl4fLlyxgfH8fBgwdlR/NJJ06cwM6dO2EwGPDu3TtUVVXB398f+/btkx3NZ4yNjc35q7q3txculwtqtRp6vR6lpaW4ePEi1q5dC6PRiMrKSuh0OuTl5ckLLdHP9kutVsPpdGLPnj3QaDRwu904deoUTCYTsrOzJaaWy+FwoLa2Fvfv30doaKj3up2wsDAEBwcjLCwMxcXFKC8vh1qtxqpVq3D8+HFYrVZs2bJFcvrF96v9crvdqK2txY4dO7B69Wp0dHSgrKwM6enpSElJkZxejoqKCtjtduj1eoyOjqK2thatra1oamrifAG87cWfcu3aNaHX64WiKCItLU08e/ZMdiSflZ+fL7RarVAURcTExIj8/HzR09MjO5ZPaWlpEQB++CksLBRCfLn1RWVlpYiOjhaBgYHCZrOJ7u5uuaEl+tl+TUxMiKysLBEVFSUCAgKEwWAQhw8fFh6PR3ZsqebbLwCiurrae8ynT5/EsWPHREREhFixYoXYtWuXGBwclBdaol/tV39/v0hPTxdqtVoEBgYKk8kkTp48KUZGRuQGl+jQoUPCYDAIRVFEVFSUsNls4tGjR973l/t8qYQQYjELIBERERHNxWvIiIiIiCRjISMiIiKSjIWMiIiISDIWMiIiIiLJWMiIiIiIJGMhIyIiIpKMhYyIiIhIMhYyIiIiIslYyIiIiIgkYyEjIvqqqKgIKpUKKpUKiqLAZDLh/PnzOHDggHd9vp+4uDgAX56ZWVBQAJ1Oh6CgIMTGxiI3NxddXV1yPxgR+Tw+XJyI6Ds5OTmorq7G5OQkHjx4AIfDgaqqKgwODnqP0Wq1qK6uRk5ODgDA398f09PT2L59O8xmM+rr66HVajEwMICHDx9ieHhY0qchoqWCz7IkIvqqqKgIw8PDuHfvnnctKysLo6OjaG9v966pVCo0NDQgLy/Pu+ZyubBp0yb09fXBYDAsYmoi+hvwlCUR0U8EBwdjamrql8dFRUXBz88PdXV1mJmZWYRkRPQ3YSEjIpqHEAJPnjxBU1MTMjIyfnl8TEwMrl69irNnzyIiIgIZGRm4cOEC3rx5swhpiWipYyEjIvpOY2MjQkJCEBQUBLvdjvz8fJw7d+63ftfhcMDj8aCmpgZWqxV3797Fhg0b8Pjx4z8bmoiWPF5DRkT0VVFREd6+fYvr169DURTodDr888+P332a7xqy+QghkJ2djcnJSbS1tf2h1ET0N+B/yIiIvrNy5UqYTCbo9fp5y9j/QqVSITExEePj4wuUjoj+VixkREQLwOVyITc3F3V1dXj16hV6enpw48YN3Lx5E7m5ubLjEZGP433IiIgWQGxsLOLi4uB0OtHX1+e9YazT6URZWZnseETk43gNGREREZFkPGVJREREJBkLGREREZFkLGREREREkrGQEREREUnGQkZEREQkGQsZERERkWQsZERERESSsZARERERScZCRkRERCQZCxkRERGRZCxkRERERJL9B4bS5sUZOfKoAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -4634,7 +4635,7 @@ }, { "cell_type": "code", - "execution_count": 175, + "execution_count": 343, "metadata": {}, "outputs": [ { @@ -4643,7 +4644,7 @@ "" ] }, - "execution_count": 175, + "execution_count": 343, "metadata": {}, "output_type": "execute_result" }, @@ -4672,7 +4673,7 @@ }, { "cell_type": "code", - "execution_count": 176, + "execution_count": 344, "metadata": { "scrolled": true }, @@ -4683,7 +4684,7 @@ "" ] }, - "execution_count": 176, + "execution_count": 344, "metadata": {}, "output_type": "execute_result" }, @@ -4711,7 +4712,7 @@ }, { "cell_type": "code", - "execution_count": 177, + "execution_count": 345, "metadata": {}, "outputs": [], "source": [ @@ -4725,7 +4726,7 @@ }, { "cell_type": "code", - "execution_count": 178, + "execution_count": 346, "metadata": { "scrolled": true }, @@ -4932,7 +4933,7 @@ "[5 rows x 21 columns]" ] }, - "execution_count": 178, + "execution_count": 346, "metadata": {}, "output_type": "execute_result" } @@ -4950,7 +4951,7 @@ }, { "cell_type": "code", - "execution_count": 179, + "execution_count": 347, "metadata": {}, "outputs": [ { @@ -4980,7 +4981,7 @@ }, { "cell_type": "code", - "execution_count": 180, + "execution_count": 348, "metadata": { "scrolled": true }, @@ -5178,7 +5179,7 @@ "4 47.0 0 " ] }, - "execution_count": 180, + "execution_count": 348, "metadata": {}, "output_type": "execute_result" } @@ -5197,7 +5198,7 @@ }, { "cell_type": "code", - "execution_count": 181, + "execution_count": 349, "metadata": {}, "outputs": [], "source": [ @@ -5213,7 +5214,7 @@ }, { "cell_type": "code", - "execution_count": 182, + "execution_count": 350, "metadata": {}, "outputs": [ { @@ -5222,7 +5223,7 @@ "(542, 20)" ] }, - "execution_count": 182, + "execution_count": 350, "metadata": {}, "output_type": "execute_result" } @@ -5240,7 +5241,7 @@ }, { "cell_type": "code", - "execution_count": 183, + "execution_count": 351, "metadata": { "scrolled": false }, @@ -5267,7 +5268,7 @@ }, { "cell_type": "code", - "execution_count": 184, + "execution_count": 352, "metadata": {}, "outputs": [], "source": [ @@ -5284,7 +5285,7 @@ }, { "cell_type": "code", - "execution_count": 185, + "execution_count": 353, "metadata": {}, "outputs": [], "source": [ @@ -5301,7 +5302,7 @@ }, { "cell_type": "code", - "execution_count": 186, + "execution_count": 354, "metadata": { "scrolled": true }, @@ -5457,7 +5458,7 @@ }, { "cell_type": "code", - "execution_count": 187, + "execution_count": 355, "metadata": {}, "outputs": [], "source": [ @@ -5476,7 +5477,7 @@ }, { "cell_type": "code", - "execution_count": 188, + "execution_count": 356, "metadata": {}, "outputs": [], "source": [ @@ -5491,7 +5492,7 @@ }, { "cell_type": "code", - "execution_count": 189, + "execution_count": 357, "metadata": { "scrolled": true }, @@ -5622,7 +5623,7 @@ "234 0.592593 0.552632 " ] }, - "execution_count": 189, + "execution_count": 357, "metadata": {}, "output_type": "execute_result" } @@ -5640,7 +5641,7 @@ }, { "cell_type": "code", - "execution_count": 190, + "execution_count": 358, "metadata": {}, "outputs": [], "source": [ @@ -5661,7 +5662,7 @@ }, { "cell_type": "code", - "execution_count": 191, + "execution_count": 359, "metadata": {}, "outputs": [ { @@ -5708,7 +5709,7 @@ }, { "cell_type": "code", - "execution_count": 192, + "execution_count": 360, "metadata": {}, "outputs": [ { @@ -5739,7 +5740,7 @@ }, { "cell_type": "code", - "execution_count": 193, + "execution_count": 361, "metadata": {}, "outputs": [ { @@ -5748,7 +5749,7 @@ "0.7361963190184049" ] }, - "execution_count": 193, + "execution_count": 361, "metadata": {}, "output_type": "execute_result" } @@ -5768,14 +5769,14 @@ }, { "cell_type": "code", - "execution_count": 194, + "execution_count": 362, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Accuracy: 0.7914110429447853\n" + "Accuracy: 0.7975460122699386\n" ] } ], @@ -5799,7 +5800,7 @@ }, { "cell_type": "code", - "execution_count": 195, + "execution_count": 363, "metadata": { "scrolled": true }, @@ -5810,13 +5811,13 @@ "" ] }, - "execution_count": 195, + "execution_count": 363, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAGdCAYAAAAczXrvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAj9UlEQVR4nO3df3RU9Z3/8dcEkgmCGQRkklQC8QcGURQDhRGsFaMppRSWiOjSNgqtxca0kPVXdkXAqoP4I4gEUMSgtSlKq1TcRRZTAa0JYBQVf0QsrMGFGcSaRKhMYmb2D8536nwCksFJZr73Ph/n3HPIvTf3fuYc5cX7/fnMvY5QKBQSAACwjaR4DwAAAHQuwh8AAJsh/AEAsBnCHwAAmyH8AQCwGcIfAACbIfwBALAZwh8AAJsh/AEAsJmu8R7A/5MztyzeQwASTr87X4v3EICEtCG4ukOvH/QNjNm1ktI/jNm1YiVhwh8AgEQRVDBm10rEFnsijgkAAHQgKn8AAAytodhV/okYtIk4JgAA4iooa7/wlvAHAMAQyzn/RMScPwAANkPlDwCAoTVE2x8AAFux+pw/bX8AAGyGyh8AAEOrxSt/wh8AAANtfwAAYClU/gAAGFjtDwCAzVj7ET+0/QEAsB0qfwAADFZf7U/lDwCAoTUUuy2q+7a2avbs2crOzla3bt10xhln6Le//a1CX1uDEAqFdMcddygjI0PdunVTXl6edu7cGdV9CH8AAAzBGG7RuPfee7V06VItXrxY77//vu69914tWLBADz/8cPicBQsWaNGiRVq2bJm2bNmi7t27Kz8/X4cPH273fWj7AwCQIF577TVNmDBB48aNkyQNGDBAf/jDH7R161ZJR6r+hQsX6vbbb9eECRMkSU8++aTcbrfWrFmjq6++ul33ofIHAMDQKkfMtkAgoKampogtEAgc9b4XXXSRqqqq9OGHH0qS3nrrLb366qsaO3asJGn37t3y+XzKy8sL/47L5dKIESNUXV3d7s9H+AMAYAiGYrd5vV65XK6Izev1HvW+t912m66++mrl5OQoOTlZQ4cO1cyZMzV16lRJks/nkyS53e6I33O73eFj7UHbHwCADlRaWqqSkpKIfU6n86jnPvPMM/r973+vyspKDR48WNu3b9fMmTOVmZmpwsLCmI2J8AcAwNAqR8yu5XQ6jxn2pptvvjlc/UvSeeedp48//lher1eFhYVKT0+XJPn9fmVkZIR/z+/364ILLmj3mGj7AwBgiOWcfzT+8Y9/KCkpMpq7dOmiYPDI9ways7OVnp6uqqqq8PGmpiZt2bJFHo+n3feh8gcAIEGMHz9ed999t7KysjR48GC9+eabevDBBzVt2jRJksPh0MyZM3XXXXfprLPOUnZ2tmbPnq3MzExNnDix3fch/AEAMARDsWv7R+Phhx/W7Nmz9atf/Ur79+9XZmamfvnLX+qOO+4In3PLLbfo0KFDuv7669XQ0KDRo0frxRdfVGpqarvv4wiFEuPVRTlzy+I9BCDh9LvztXgPAUhIG4KrO/T6b9RnxexaF2bVx+xascKcPwAANkPbHwAAQ6vFa2PCHwAAQ7zm/DsL4Q8AgCGW3/NPRNbuawAAgDao/AEAMLSGrF0bE/4AABiCFm+MW/vTAQCANqj8AQAwWH3BH+EPAIDB6nP+1v50AACgDSp/AAAMQdr+AADYi9Uf72vtTwcAANqg8gcAwGD1BX+EPwAABqs/5IfwBwDA0Grxt/pZ+582AACgDSp/AAAMVl/tT/gDAGAIWnzBn7U/HQAAaIPKHwAAA21/AABshtX+AADAUqj8AQAw8JAfAABsxuqP97X2pwMAAG1Q+QMAYAjK2gv+CH8AAAxWb/sT/gAAGKz+PX9rfzoAANAGlT8AAIagxR/yQ/gDAGCg7Q8AACyFyh8AAIPVX+lL+AMAYGi1+Pf8rf1PGwAA0AaVPwAABtr+AADYDG1/AABgKVT+AAAYaPsDAGAzvNgHAACbsforfa39TxsAANAG4Q8AgKE1lBSzLRoDBgyQw+FosxUVFUmSDh8+rKKiIvXu3Vs9evRQQUGB/H5/1J+P8AcAwBAMOWK2RWPbtm3at29feNuwYYMkafLkyZKkWbNmae3atVq9erU2bdqkvXv3atKkSVF/Pub8AQBIEKeeemrEz/Pnz9cZZ5yhSy65RI2NjVqxYoUqKys1ZswYSVJFRYUGDRqkmpoajRw5st33ofIHAMDQqqSYbYFAQE1NTRFbIBA47hiam5v11FNPadq0aXI4HKqtrVVLS4vy8vLC5+Tk5CgrK0vV1dVRfT7CHwAAQyzb/l6vVy6XK2Lzer3HHcOaNWvU0NCga6+9VpLk8/mUkpKinj17Rpzndrvl8/mi+ny0/QEA6EClpaUqKSmJ2Od0Oo/7eytWrNDYsWOVmZkZ8zER/gAAGIIxbIw7nc52hf3Xffzxx3rppZf07LPPhvelp6erublZDQ0NEdW/3+9Xenp6VNen7Q8AgKE15IjZdiIqKirUt29fjRs3LrwvNzdXycnJqqqqCu+rq6tTfX29PB5PVNen8gcAIIEEg0FVVFSosLBQXbv+M6ZdLpemT5+ukpIS9erVS2lpaSouLpbH44lqpb9E+AMA0Ea038+PpZdeekn19fWaNm1am2NlZWVKSkpSQUGBAoGA8vPztWTJkqjvQfgDAGCI51v9rrjiCoVCoaMeS01NVXl5ucrLy7/VPQh/AAAMrbzYBwAAWAmVPwAAhnjO+XcGwh/6xejh+re80Xqi5g15X9wkSXry2iv13QH9Is5b9frbmvtC1dEuAVjCeRcP0uSbfqyBuaerd2YvzfmXBXrtz9sizsnK+Y5+Pv8nGnLJOUrqmqT69z7RvCsf0Kd7DsRp1OgI8Zzz7wyEv82dm+nWlNzz9IHv0zbHnql9R4tefi3885ctX3Xm0IBOl9rdqV1vf6z1FS9r7rM3tzmecbpbZa/8Vuse/4uemPu0/tH0pQYM7qeWw81xGC1w4gh/GzspJVn3F4zV7LUv6YbvfbfN8S9bWnTg4D/iMDIgPra9uF3bXtx+zOPX3XWNtv7Xm3rs1qfC+/btiv5d6kh8QRb8waru+OEYbfxwt6p31R/1+PjzclR9yww9/6ufquSyUUpN5t+KsC+Hw6ER4y7UJzv3yrvuP/SM7zEtqr5HF00YHu+hoQPE+wl/HS3qv80PHDigxx9/XNXV1eG3CKWnp+uiiy7Stdde2+ZdxEhMPzx3oM7J6Ksrl1ce9fgL79Rpb0OT9n9xUAPdp+qmy0drQJ9T9OunX+jkkQKJoWdfl046uZum3DpRK2ev0mO3/V7DfnCB5vzpJt08Zp7e3vxevIcItFtU4b9t2zbl5+frpJNOUl5engYOHCjpyEsFFi1apPnz52v9+vUaNmzYN14nEAi0eZdx8KuvlNSVyrIzpKf10L//4Pua9rtn1fxV61HPeab2nfCfP9z/mT49eEhPFF6pfqe4tOfzxs4aKpAwkpKOVHDVf35dzy78T0nS3976Hw32nK0f/fJywt9iWPD3NcXFxZo8ebKWLVsmhyOylREKhTRjxgwVFxerurr6G6/j9Xo1b968iH29L7lCfb7/g2iGgxM0ONOtPj2669lfTg3v65qUpGH9T9PU716gIb9dpKDxdKm3P9knSerfqyfhD1tqPPCFvmr5Sh+/vydif/0Hn+jcUTlxGhU6Cl/1+5q33npLK1eubBP80pH5sFmzZmno0KHHvc7R3m08bMEj0QwF30LNrnqNX/JkxL57JlyhXQc+12N/3dYm+CUpJ72vJGn/wUOdMkYg0XzV8pXqtv1N/QZ+J2L/d87KlP9jvuaH/79EFf7p6enaunWrcnKO/q/crVu3yu12H/c6R3u3MS3/znOouUU7938Wse/LlhY1fPmldu7/TP1OcelH5+Vo887davjysAa6+6g0/xJt+59P9KGfv+RgXandU/WdM//5XvT07L464/wBavr7QX2654BW3/+8/mPVLL39ynt66+V3NfwHF8gzPlf/dunc+A0aHcLqq/2jStybbrpJ119/vWpra3XZZZeFg97v96uqqkrLly/X/fff3yEDRedpaW3VRadnqXDkUHVLSda+xi/03+9/pKWbt8R7aECHGjjsdD3w8j+nJG948FpJ0n+v3Kj7ppXrr2u26qEbHtU1t/2Lih6apk/q9mrelffr3b9+EKcRo6NYve3vCB3r1UHH8PTTT6usrEy1tbVqbT2yWKxLly7Kzc1VSUmJrrrqqhMaSM7cshP6PcDK+t352vFPAmxoQ3B1h15/SvWMmF3rac+ymF0rVqLutU+ZMkVTpkxRS0uLDhw40gLu06ePkpOTYz44AAAQeyc80Z6cnKyMjIxYjgUAgIRg9bY/q+wAADBYfcGftZ9iAAAA2qDyBwDAQNsfAACbsXr40/YHAMBmqPwBADBYvfIn/AEAMFg9/Gn7AwBgM1T+AAAYrP49f8IfAACD1dv+hD8AAAarhz9z/gAA2AyVPwAABqtX/oQ/AAAGq4c/bX8AAGyGyh8AAEPI4pU/4Q8AgMHq3/On7Q8AgM1Q+QMAYLD6gj/CHwAAg9Xn/Gn7AwBgM1T+AAAYaPsDAGAzVm/7E/4AABisXvkz5w8AgM1Q+QMAYAiF4j2CjkX4AwBg4Al/AACg0/zv//6vfvKTn6h3797q1q2bzjvvPL3++uvh46FQSHfccYcyMjLUrVs35eXlaefOnVHdg/AHAMAQCjlitkXj888/16hRo5ScnKx169bpvffe0wMPPKBTTjklfM6CBQu0aNEiLVu2TFu2bFH37t2Vn5+vw4cPt/s+tP0BADDEa7X/vffeq379+qmioiK8Lzs7O/znUCikhQsX6vbbb9eECRMkSU8++aTcbrfWrFmjq6++ul33ofIHAKADBQIBNTU1RWyBQOCo5z7//PMaNmyYJk+erL59+2ro0KFavnx5+Pju3bvl8/mUl5cX3udyuTRixAhVV1e3e0yEPwAAhlAodpvX65XL5YrYvF7vUe+7a9cuLV26VGeddZbWr1+vG264Qb/+9a/1xBNPSJJ8Pp8kye12R/ye2+0OH2sP2v4AABhi+YS/0tJSlZSUROxzOp1HPTcYDGrYsGG65557JElDhw7Vjh07tGzZMhUWFsZsTFT+AAB0IKfTqbS0tIjtWOGfkZGhc845J2LfoEGDVF9fL0lKT0+XJPn9/ohz/H5/+Fh7EP4AABjitdp/1KhRqquri9j34Ycfqn///pKOLP5LT09XVVVV+HhTU5O2bNkij8fT7vvQ9gcAwBCv1f6zZs3SRRddpHvuuUdXXXWVtm7dqkcffVSPPvqoJMnhcGjmzJm66667dNZZZyk7O1uzZ89WZmamJk6c2O77EP4AABji9Xjf4cOH67nnnlNpaanuvPNOZWdna+HChZo6dWr4nFtuuUWHDh3S9ddfr4aGBo0ePVovvviiUlNT230fRyiUGE8wzplbFu8hAAmn352vxXsIQELaEFzdodc/Z83cmF3rvYmxu1asUPkDAGCI5Wr/RET4AwBgsHr4s9ofAACbofIHAMCQEIvhOhDhDwCAgbY/AACwFCp/AABMFu/7E/4AABis3vYn/AEAMCTG4+86DnP+AADYDJU/AAAG2v4AANiNxcOftj8AADZD5Q8AgMHqC/4IfwAATBYPf9r+AADYDJU/AAAGVvsDAGA3tP0BAICVUPkDAGCg7Q8AgN1YvO1P+AMA0Ia1K3/m/AEAsBkqfwAATLT9AQCwGYuHP21/AABshsofAAATX/UDAMBerP5WP9r+AADYDJU/AAAmi1f+hD8AACaLz/nT9gcAwGao/AEAMDho+wMAYDOEPwAANsOcPwAAsBIqfwAATLT9AQCwGYuHP21/AABshsofAACTxSt/wh8AABOr/QEAgJVQ+QMAYLD6E/6o/AEAMIViuEVh7ty5cjgcEVtOTk74+OHDh1VUVKTevXurR48eKigokN/vj/rjEf4AACSQwYMHa9++feHt1VdfDR+bNWuW1q5dq9WrV2vTpk3au3evJk2aFPU9aPsDAJBAunbtqvT09Db7GxsbtWLFClVWVmrMmDGSpIqKCg0aNEg1NTUaOXJku+9B5Q8AgMERit0WCATU1NQUsQUCgWPee+fOncrMzNTpp5+uqVOnqr6+XpJUW1urlpYW5eXlhc/NyclRVlaWqquro/p8CVP5979/e7yHACScdXvfivcQAHuK4Vf9vF6v5s2bF7Fvzpw5mjt3bptzR4wYoZUrV+rss8/Wvn37NG/ePF188cXasWOHfD6fUlJS1LNnz4jfcbvd8vl8UY0pYcIfAAArKi0tVUlJScQ+p9N51HPHjh0b/vOQIUM0YsQI9e/fX88884y6desWszER/gAAmGL4VT+n03nMsD+enj17auDAgfroo490+eWXq7m5WQ0NDRHVv9/vP+oagW/CnD8AAKY4fdXPdPDgQf3tb39TRkaGcnNzlZycrKqqqvDxuro61dfXy+PxRHVdKn8AABLETTfdpPHjx6t///7au3ev5syZoy5duuiaa66Ry+XS9OnTVVJSol69eiktLU3FxcXyeDxRrfSXCH8AANqI1xP+PvnkE11zzTX67LPPdOqpp2r06NGqqanRqaeeKkkqKytTUlKSCgoKFAgElJ+fryVLlkR9H8IfAABTnMJ/1apV33g8NTVV5eXlKi8v/1b3Yc4fAACbofIHAMBk8Rf7EP4AABh4qx8AALAUKn8AAEwxfLxvIiL8AQAwWbztT/gDAGBgzh8AAFgKlT8AACaLV/6EPwAABtr+AADAUqj8AQAwWbzyJ/wBADBZPPxp+wMAYDNU/gAAGFjwBwAALIXwBwDAZmj7AwBgsnjbn/AHAMBg9Tl/wh8AAJPFw585fwAAbIbKHwAAk8Urf8IfAACD1ef8afsDAGAzVP4AAJgsXvkT/gAAGGj7AwAAS6HyBwDAZPHKn/AHAMBk8fCn7Q8AgM1Q+QMAYLD6gj/CHwAAE+EPAIDNWDz8mfMHAMBmqPwBADAw5w8AgN1YPPxp+wMAYDNU/gAAGGj7AwBgNxYPf9r+AADYDJU/AAAmi1f+hD8AAAZHvAfQwWj7AwBgM1T+AACYLN72p/IHAMDgCMVuO1Hz58+Xw+HQzJkzw/sOHz6soqIi9e7dWz169FBBQYH8fn/U1yb8AQAwhWK4nYBt27bpkUce0ZAhQyL2z5o1S2vXrtXq1au1adMm7d27V5MmTYr6+oQ/AAAJ5ODBg5o6daqWL1+uU045Jby/sbFRK1as0IMPPqgxY8YoNzdXFRUVeu2111RTUxPVPQh/AABMMaz8A4GAmpqaIrZAIHDMWxcVFWncuHHKy8uL2F9bW6uWlpaI/Tk5OcrKylJ1dXVUH4/wBwDAEMs5f6/XK5fLFbF5vd6j3nfVqlV64403jnrc5/MpJSVFPXv2jNjvdrvl8/mi+nys9gcAoAOVlpaqpKQkYp/T6Wxz3p49e/Sb3/xGGzZsUGpqaoeOifAHAMAUw6/6OZ3Oo4a9qba2Vvv379eFF14Y3tfa2qrNmzdr8eLFWr9+vZqbm9XQ0BBR/fv9fqWnp0c1JsIfAABDPN7qd9lll+mdd96J2HfdddcpJydHt956q/r166fk5GRVVVWpoKBAklRXV6f6+np5PJ6o7kX4AwCQAE4++WSde+65Efu6d++u3r17h/dPnz5dJSUl6tWrl9LS0lRcXCyPx6ORI0dGdS/CHwAAU4I+4a+srExJSUkqKChQIBBQfn6+lixZEvV1CH8AAAzxaPsfzcaNGyN+Tk1NVXl5ucrLy7/VdfmqHwAANkPlDwCAKUEq/45C+AMAYCL8AQCwl0SZ8+8ozPkDAGAzVP4AAJgsXvkT/gAAGBwha6c/bX8AAGyGyh8AAJO1C3/CHwAAE6v9AQCApVD5AwBgsnjlT/gDAGCg7Q8AACyFyh8AAJPFK3/CHwAAg9Xb/oQ/AAAmi4c/c/4AANgMlT8AAAba/gAA2A0v9gEAAFZC5Q8AgIG2PwAAdmPx8KftDwCAzVD5AwBgcATjPYKOReVvU+eOOlvznpmpyp0Ltf7gE/L86MKI46ndnSp64Kd6qq5Mz3+6XI++fo/GTb80TqMFOkdrq/TQCilvinTB5dIV10hLnjj2wu+5D0iDLnHoidWdO050glAMtwRE5W9TqSc5tWvHHq3/3Sua84dftzn+y/n/qgu+N0gLfv6I/B8f0IWXnavisp/ps30NqvmvN+MwYqDjPVYprfqz5C2Vzhog7aiT/n2+dHJ36adXRp67YbP01ntS3z4J+rc78A0If5t6fcPben3D28c8fs6IM7Wh8lW9/coHkqR1FRs1btqlOnvY6YQ/LOvNd6Uxo6Tve478/J0M6T+rpHc+iDzP/6l09yJp+X3SjNs6f5zoeFZf7U/bH0f13paPNPKHQ9U74xRJ0vnfy9F3znSrtmpHnEcGdJyhg6WaN6Tde478/MFH0hvvSBeP+Oc5waB0693StKuls7LjM050glAodlsCovLHUS35t9/pNw9fp8qdC/VVy1cKBkN66MYK7fhrXbyHBnSYX0yVDv5DGvdTqUuS1BqUZv5cGn/5P895rFLq0kX6aUH8xomOZ/XKP+bhv2fPHs2ZM0ePP/74Mc8JBAIKBAIR+4KhViU5usR6ODhBE2ZcrpzhZ+iOyWXaX/+Zzht9tooe/Kk+2/e53tz4XryHB3SIdS9LL2yQ7pt9ZM7//Y8k72Kpbx9p4g+kd+uk3/1J+tNyyeGI92iBExfztv/f//53PfHEE994jtfrlcvlith2tbwT66HgBKWkJuvauVfq0dI/aMu67dr97h49/8hL2vSnrbryN2PjPTygw9y/VPr5VGncZdLAM6QJ+VLhZOnR3x85/vrb0mefS2Ouks4dc2Tb63NowRLpsinxHTtijNX+kZ5//vlvPL5r167jXqO0tFQlJSUR+woyfhXtUNBBuiZ3UXJKVwWDkf/VBoNBOZJYJgLr+jIgJRkVfZekI/P8kvTjKyRPbuTxX9wc0o+vkCbx72JLoe1vmDhxohwOh0LfsIjBcZx+mNPplNPpjNhHy79zpXZ3KvN0d/jn9P6n6vTzsvTF5wf16Sd/11uvvK9f3D1FzYeb5a8/oCGjc5R3zSg9WvqHOI4a6FiXXiQ98pSU4T7S9n9vp7TyGWnSD48cP8V1ZPu6rl2lPr2k7KxOHy5wwqIO/4yMDC1ZskQTJkw46vHt27crNzf3qMeQOAZemK371pWGf55x779Kkv77qVf0wIzH5C1cqmnzJuvWFTN08indtX/PAa2c90e98Nhf4jVkoMPd/psjD/m5s0z6++dH5vqv+rH0q8J4jwydLkFX6cdK1OGfm5ur2traY4b/8boCSAxvv/KB8nsc+2+0z/c36oEbHuvEEQHx1/0k6d+Lj2ztVfV0x40H8UPb33DzzTfr0KFDxzx+5pln6uWXX/5WgwIAAB0n6vC/+OKLv/F49+7ddckll5zwgAAAiDsqfwAA7MXqbX++twUAgM1Q+QMAYApau/Qn/AEAMFk7+wl/AABMzPkDAIBOsXTpUg0ZMkRpaWlKS0uTx+PRunXrwscPHz6soqIi9e7dWz169FBBQYH8fn/U9yH8AQAwhUKx26Jw2mmnaf78+aqtrdXrr7+uMWPGaMKECXr33XclSbNmzdLatWu1evVqbdq0SXv37tWkSZOi/ni0/QEAMMSr7T9+/PiIn++++24tXbpUNTU1Ou2007RixQpVVlZqzJgxkqSKigoNGjRINTU1GjlyZLvvQ+UPAEAHCgQCampqitgCgcBxf6+1tVWrVq3SoUOH5PF4VFtbq5aWFuXl5YXPycnJUVZWlqqrq6MaE+EPAIApFLvN6/XK5XJFbF6v95i3fuedd9SjRw85nU7NmDFDzz33nM455xz5fD6lpKSoZ8+eEee73W75fL6oPh5tfwAADI4YvqCutLRUJSUlEfvM19p/3dlnn63t27ersbFRf/zjH1VYWKhNmzbFbDwS4Q8AQIdyOp3fGPamlJQUnXnmmZKOvEl327ZteuihhzRlyhQ1NzeroaEhovr3+/1KT0+Paky0/QEAMAVjuH3boQSDCgQCys3NVXJysqqqqsLH6urqVF9fL4/HE9U1qfwBADDEsu0fjdLSUo0dO1ZZWVn64osvVFlZqY0bN2r9+vVyuVyaPn26SkpK1KtXL6Wlpam4uFgejyeqlf4S4Q8AQMLYv3+/fvazn2nfvn1yuVwaMmSI1q9fr8svv1ySVFZWpqSkJBUUFCgQCCg/P19LliyJ+j6OUChO/7wx5PcojPcQgISz7qPovr4D2EVS+ocdev3LLj32avxoVb1cGrNrxQqVPwAApsSoizsM4Q8AgIEX+wAAAEuh8gcAwETbHwAAe3HE4Pv5iYy2PwAANkPlDwCAibY/AAA2Y+3sp+0PAIDdUPkDAGCI17P9OwvhDwCAyeLhT9sfAACbofIHAMBk8e/5E/4AABiY8wcAwG4sHv7M+QMAYDNU/gAAmCxe+RP+AACYLL7gj7Y/AAA2Q+UPAICB1f4AANiNxcOftj8AADZD5Q8AgMnilT/hDwCAyeLhT9sfAACbofIHAMBk8e/5E/4AABj4qh8AAHZj8fBnzh8AAJuh8gcAwBS0duVP+AMAYKLtDwAArITKHwAAk8Urf8IfAACTxcOftj8AADZD5Q8AgInV/gAA2EzI2s/3pe0PAIDNUPkDAGCy+II/wh8AABNz/gAA2IzFK3/m/AEAsBkqfwAATFT+AADYTCgUuy0KXq9Xw4cP18knn6y+fftq4sSJqqurizjn8OHDKioqUu/evdWjRw8VFBTI7/dHdR/CHwCABLFp0yYVFRWppqZGGzZsUEtLi6644godOnQofM6sWbO0du1arV69Wps2bdLevXs1adKkqO5D2x8AAFMwPg/5efHFFyN+Xrlypfr27ava2lp973vfU2Njo1asWKHKykqNGTNGklRRUaFBgwappqZGI0eObNd9qPwBADDFqe1vamxslCT16tVLklRbW6uWlhbl5eWFz8nJyVFWVpaqq6vbfV0qfwAAOlAgEFAgEIjY53Q65XQ6v/H3gsGgZs6cqVGjRuncc8+VJPl8PqWkpKhnz54R57rdbvl8vnaPicofAABTDCt/r9crl8sVsXm93uMOoaioSDt27NCqVati/vGo/AEAMMXwCX+lpaUqKSmJ2He8qv/GG2/UCy+8oM2bN+u0004L709PT1dzc7MaGhoiqn+/36/09PR2j4nKHwCADuR0OpWWlhaxHSv8Q6GQbrzxRj333HP6y1/+ouzs7Ijjubm5Sk5OVlVVVXhfXV2d6uvr5fF42j0mKn8AAAyhOL3St6ioSJWVlfrzn/+sk08+OTyP73K51K1bN7lcLk2fPl0lJSXq1auX0tLSVFxcLI/H0+6V/hLhDwBAW3F6sc/SpUslSd///vcj9ldUVOjaa6+VJJWVlSkpKUkFBQUKBALKz8/XkiVLoroP4Q8AgClOj/cNteO+qampKi8vV3l5+Qnfhzl/AABshsofAABTnJ7w11kIfwAATLzVDwAAWAmVPwAAhhBtfwAAbIa2PwAAsBIqfwAATHF6yE9nIfwBADDF6fG+nYW2PwAANkPlDwCAIUTbHwAAm7F425/wBwDAYPXKnzl/AABshsofAACTxdv+jlB7Xh4M2wgEAvJ6vSotLZXT6Yz3cICEwP8XsBrCHxGamprkcrnU2NiotLS0eA8HSAj8fwGrYc4fAACbIfwBALAZwh8AAJsh/BHB6XRqzpw5LGoCvob/L2A1LPgDAMBmqPwBALAZwh8AAJsh/AEAsBnCHwAAmyH8EVZeXq4BAwYoNTVVI0aM0NatW+M9JCCuNm/erPHjxyszM1MOh0Nr1qyJ95CAmCD8IUl6+umnVVJSojlz5uiNN97Q+eefr/z8fO3fvz/eQwPi5tChQzr//PNVXl4e76EAMcVX/SBJGjFihIYPH67FixdLkoLBoPr166fi4mLddtttcR4dEH8Oh0PPPfecJk6cGO+hAN8alT/U3Nys2tpa5eXlhfclJSUpLy9P1dXVcRwZAKAjEP7QgQMH1NraKrfbHbHf7XbL5/PFaVQAgI5C+AMAYDOEP9SnTx916dJFfr8/Yr/f71d6enqcRgUA6CiEP5SSkqLc3FxVVVWF9wWDQVVVVcnj8cRxZACAjtA13gNAYigpKVFhYaGGDRum7373u1q4cKEOHTqk6667Lt5DA+Lm4MGD+uijj8I/7969W9u3b1evXr2UlZUVx5EB3w5f9UPY4sWLdd9998nn8+mCCy7QokWLNGLEiHgPC4ibjRs36tJLL22zv7CwUCtXruz8AQExQvgDAGAzzPkDAGAzhD8AADZD+AMAYDOEPwAANkP4AwBgM4Q/AAA2Q/gDAGAzhD8AADZD+AMAYDOEPwAANkP4AwBgM4Q/AAA2838Y+AwBcLm38gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAGdCAYAAAAczXrvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjxElEQVR4nO3df3hT9d3/8VeKbYpgg1RoWqFQFSyiCBYsAfwxLFTGEEZFdGxDZTJd7QadOnvfAurU4M8iUkAZFr22TmW3oLivMKyCt9Lyow50OgsKt8Vhgqhtodq0Nvn+wbW4nBZoNG3iOc/HdZ3rMuecnPPJH/jq+/355MQWCAQCAgAAlhEX7QEAAIDORfgDAGAxhD8AABZD+AMAYDGEPwAAFkP4AwBgMYQ/AAAWQ/gDAGAxhD8AABZzUrQH8G+D5hdHewhAzOlzz5ZoDwGISRv9qzv0+n7PwIhdK865O2LXipSYCX8AAGKFX/6IXSsWW+yxOCYAANCBqPwBADBoCUSu8o/FoI3FMQEAEFV+mfsHbwl/AAAMIjnnH4uY8wcAwGKo/AEAMGgJ0PYHAMBSzD7nT9sfAACLofIHAMCgxeSVP+EPAIABbX8AAGAqVP4AABiw2h8AAIsx9yN+aPsDAGA5VP4AABiw2h8AAItpMXf2E/4AABgx5w8AAEyFyh8AAIMW2aI9hA5F+AMAYOA3+Zw/bX8AAGJES0uL5s2bp4yMDHXt2lVnnnmmfv/73yvwHw8dCgQCmj9/vlJTU9W1a1fl5ORoz549Yd2H8AcAwKBFtoht4bj//vu1bNkyLVmyRP/85z91//3364EHHtBjjz0WPOeBBx7Q4sWLtXz5cm3dulXdunVTbm6uGhsb230f2v4AABhEa85/y5Ytmjx5siZOnChJ6t+/v/785z9r27Ztko5W/YsWLdIdd9yhyZMnS5KefvpppaSkaO3atbr66qvbdR8qfwAAOpDP51N9fX3I5vP52jx31KhRKi8v1+7duyVJu3bt0htvvKEJEyZIkvbt2yePx6OcnJzgexwOh7Kzs1VRUdHuMRH+AAAY+AO2iG1ut1sOhyNkc7vdbd739ttv19VXX63MzEzFx8dr2LBhmjNnjmbMmCFJ8ng8kqSUlJSQ96WkpASPtQdtfwAADCLZ9i8qKlJhYWHIPrvd3ua5zz33nP70pz+prKxMgwcP1s6dOzVnzhylpaVp5syZERsT4Q8AQAey2+3HDHujW2+9NVj9S9J5552njz76SG63WzNnzpTT6ZQkeb1epaamBt/n9Xo1dOjQdo+Jtj8AAAYtiovYFo4vv/xScXGh7+nSpYv8/qMPHM7IyJDT6VR5eXnweH19vbZu3SqXy9Xu+1D5AwBg4A9EZ7X/pEmTdO+99yo9PV2DBw/W3//+dz3yyCO6/vrrJUk2m01z5szRPffcowEDBigjI0Pz5s1TWlqapkyZ0u77EP4AABhE66t+jz32mObNm6df/epXOnjwoNLS0vTLX/5S8+fPD55z2223qaGhQbNnz1Ztba3GjBmj9evXKzExsd33sQX+87FBUTRofnG0hwDEnD73bIn2EICYtNG/ukOvv+WjMyJ2rVH99kbsWpFC5Q8AgEFLwNxL4gh/AAAM/CZfD2/uTwcAAFqh8gcAwCBaC/46C+EPAICB2ef8zf3pAABAK1T+AAAY+Gn7AwBgLeE+lvf7xtyfDgAAtELlDwCAgdkX/BH+AAAYmP0hP4Q/AAAGLVH6Vb/OYu4/bQAAQCtU/gAAGJh9tT/hDwCAgd/kC/7M/ekAAEArVP4AABjQ9gcAwGJY7Q8AAEyFyh8AAAMe8gMAgMWY/fG+5v50AACgFSp/AAAM/DL3gj/CHwAAA7O3/Ql/AAAMzP49f3N/OgAA0AqVPwAABn6TP+SH8AcAwIC2PwAAMBUqfwAADMz+k76EPwAABi0m/56/uf+0AQAArVD5AwBgQNsfAACLoe0PAABMhcofAAAD2v4AAFgMP+wDAIDFmP0nfc39pw0AAGiFyh8AAAPa/gAAWIzZf9XP3H/aAACAVqj8AQAw4Cd9AQCwGH/AFrEtHP3795fNZmu15efnS5IaGxuVn5+v5ORkde/eXXl5efJ6vWF/PsIfAIAYsX37dn3yySfBbePGjZKkadOmSZLmzp2rdevWafXq1dq8ebMOHDigqVOnhn0f2v4AABj4o1Qb9+rVK+T1woULdeaZZ+qSSy5RXV2dVq5cqbKyMo0dO1aSVFpaqkGDBqmyslIjR45s932o/AEAMGgJ2CK2+Xw+1dfXh2w+n++EY2hqatIf//hHXX/99bLZbKqqqlJzc7NycnKC52RmZio9PV0VFRVhfT7CHwCADuR2u+VwOEI2t9t9wvetXbtWtbW1uvbaayVJHo9HCQkJ6tGjR8h5KSkp8ng8YY2Jtj8AAAaR/J5/UVGRCgsLQ/bZ7fYTvm/lypWaMGGC0tLSIjaWfyP8AQAwiOSv+tnt9naF/X/66KOP9Morr+j5558P7nM6nWpqalJtbW1I9e/1euV0OsO6Pm1/AAAMWmSL2PZtlJaWqnfv3po4cWJwX1ZWluLj41VeXh7cV11drZqaGrlcrrCuT+UPAEAM8fv9Ki0t1cyZM3XSSd/EtMPh0KxZs1RYWKiePXsqKSlJBQUFcrlcYa30lwh/AABaieaz/V955RXV1NTo+uuvb3WsuLhYcXFxysvLk8/nU25urpYuXRr2PQh/6BcXjdBvx43R0xVvyf3yZknSU9ddqQsz+oac98z2t3XXuvK2LgGYwnkXDdK0W67QwKwzlJzWUwt+/IC2vLA95Jz0zNP1i4U/1ZBLzlHcSXGqee9j3XXlw/p0/6EojRodIZJz/uEaP368AoFAm8cSExNVUlKikpKS73QPwt/izk1L0fTh5+l9z6etjj234x099uqW4Ouvmr/uzKEBnS6xm1173/5IG0pf053P39rqeOoZKSr+39/r5Sdf1VN3Pqsv679S/8F91dzYFIXRAt8e4W9hJyfE68ErJ2j+C6/oxksubHW8sblZh458GYWRAdGxff1ObV+/85jHr7vnGm37f3/XH373x+C+T/aG/1x1xD7/t1yo933Ban8LmzdxrDbv3qeKvTVtHv/RkExt+d2NejH/Z5qbM1qJ8fytCOuy2WzKnniBPt5zQO6X/1vPef6gxRX3adTkEdEeGjpAJJ/wF4vC/r/5oUOH9OSTT6qioiL4RCGn06lRo0bp2muvbfVcYsSmH547UOek9da0x8vaPP7S29U6UFevg/VHdLazl347bowyTjtVv37mpU4eKRAbevR26ORTumr676Zo1bxn9Ifb/6Thlw/Vgv+5RbeOvUtvv/5etIcItFtY4b99+3bl5ubq5JNPVk5OjgYOHCjp6AMGFi9erIULF2rDhg0aPnz4ca/j8/laPdfY//XXijuJyrIzOJO6q+iHl2rWU8+r6euWNs9ZXfVO8L/3HPxMnx5u0KrrrlTfUx3a/0VdZw0ViBlxcUcruIoXduj5RX+VJH246/802HW2fvTLcYS/yURzwV9nCCttCwoKNG3aNC1fvlw2W2grIxAI6MYbb1RBQcEJf2DA7XbrrrvuCtmXfPF49brk8nCGg29pcFqKTuveTf9z44zgvpO6xGl4vz76yYVDdf7di+U3rDR9++NPJEnpyT0If1hS3aHD+rr5a330z/0h+2ve/1jnjs6M0qjQUaL5Vb/OEFb479q1S6tWrWoV/NLR+bC5c+dq2LBhJ7xOW885HrHw8XCGgu+gYm+NrljydMi+e388Xvs+/UJ/eGN7q+CXpMzU3pKkTw83dMoYgVjzdfPXqt7+ofoOPD1k/+kD0uT9iK/54fslrPB3Op3atm2bMjPb/it327ZtSklJOeF12nrOMS3/zvNlU7P2HPwsZN9XTc2q/eor7Tn4mfqe6tCPhmRq8+59qv2qUWennKbbJ1yi7f/3sXZ7+Z8czCuxW6JOP+ubZ6Q7M3rrzPP7q/7zI/p0/yGtfuhF/fczc/X2/76nXa+9qxGXD5VrUpZ++4M7ozdodAizr/YPK3FvueUWzZ49W1VVVbrsssuCQe/1elVeXq4VK1booYce6pCBovM0t7TIdWa6fu4apq7x8fLUH9bG9z7Qss1boz00oEMNHH6GHn7tmynJmx65VpL0t1Wb9OD1JXpz7TY9etMTuub2Hyv/0ev1cfUB3XXlQ3r3zfejNGJ0FLO3/W2BYz1G6BieffZZFRcXq6qqSi0tRxeLdenSRVlZWSosLNRVV131rQYyaH7xt3ofYGZ97tly4pMAC9roX92h159ecWPErvWsa3nErhUpYffap0+frunTp6u5uVmHDh1tAZ922mmKj4+P+OAAAEDkfeuJ9vj4eKWmpkZyLAAAxASzt/1ZZQcAgIHZF/yZ+ykGAACgFSp/AAAMaPsDAGAxZg9/2v4AAFgMlT8AAAZmr/wJfwAADMwe/rT9AQCwGCp/AAAMzP49f8IfAAADs7f9CX8AAAzMHv7M+QMAYDFU/gAAGJi98if8AQAwMHv40/YHAMBiqPwBADAImLzyJ/wBADAw+/f8afsDAGAxVP4AABiYfcEf4Q8AgIHZ5/xp+wMAYDFU/gAAGND2BwDAYsze9if8AQAwMHvlz5w/AAAWQ+UPAIBBIBDtEXQswh8AAAOe8AcAAEyFyh8AAANW+wMAYDGs9gcAAJ3mX//6l376058qOTlZXbt21XnnnacdO3YEjwcCAc2fP1+pqanq2rWrcnJytGfPnrDuQfgDAGAQCERuC8cXX3yh0aNHKz4+Xi+//LLee+89Pfzwwzr11FOD5zzwwANavHixli9frq1bt6pbt27Kzc1VY2Nju+9D2x8AAINozfnff//96tu3r0pLS4P7MjIygv8dCAS0aNEi3XHHHZo8ebIk6emnn1ZKSorWrl2rq6++ul33ofIHACBGvPjiixo+fLimTZum3r17a9iwYVqxYkXw+L59++TxeJSTkxPc53A4lJ2drYqKinbfh/AHAMAgELBFbPP5fKqvrw/ZfD5fm/fdu3evli1bpgEDBmjDhg266aab9Otf/1pPPfWUJMnj8UiSUlJSQt6XkpISPNYehD8AAAb+gC1im9vtlsPhCNncbnfb9/X7dcEFF+i+++7TsGHDNHv2bN1www1avnx5RD8f4Q8AgEEkF/wVFRWprq4uZCsqKmrzvqmpqTrnnHNC9g0aNEg1NTWSJKfTKUnyer0h53i93uCx9iD8AQDoQHa7XUlJSSGb3W5v89zRo0eruro6ZN/u3bvVr18/SUcX/zmdTpWXlweP19fXa+vWrXK5XO0eE6v9AQAwiNZq/7lz52rUqFG67777dNVVV2nbtm164okn9MQTT0iSbDab5syZo3vuuUcDBgxQRkaG5s2bp7S0NE2ZMqXd9yH8AQAwiFb4jxgxQmvWrFFRUZHuvvtuZWRkaNGiRZoxY0bwnNtuu00NDQ2aPXu2amtrNWbMGK1fv16JiYntvo8tEIiNHy4cNL842kMAYk6fe7ZEewhATNroX92h1898/u6IXev9qfMjdq1IofIHAMAgJqriDkT4AwBgYPZf9WO1PwAAFkPlDwCAkcn7/oQ/AAAGZm/7E/4AABjExvfgOg5z/gAAWAyVPwAABrT9AQCwGpOHP21/AAAshsofAAADsy/4I/wBADAyefjT9gcAwGKo/AEAMGC1PwAAVkPbHwAAmAmVPwAABrT9AQCwGpO3/Ql/AABaMXflz5w/AAAWQ+UPAIARbX8AACzG5OFP2x8AAIuh8gcAwIiv+gEAYC1m/1U/2v4AAFgMlT8AAEYmr/wJfwAAjEw+50/bHwAAi6HyBwDAwEbbHwAAiyH8AQCwGOb8AQCAmVD5AwBgRNsfAACLMXn40/YHAMBiqPwBADAyeeVP+AMAYMRqfwAAYCZU/gAAGPCEPwAArMbk4U/bHwAAiyH8AQCwGMIfAAADWyByWzjuvPNO2Wy2kC0zMzN4vLGxUfn5+UpOTlb37t2Vl5cnr9cb9ueLmTn/vgu3R3sIQMxZf2BXtIcAWFMUv+o3ePBgvfLKK8HXJ530TVTPnTtXf/3rX7V69Wo5HA7dfPPNmjp1qt58882w7hEz4Q8AAI6GvdPpbLW/rq5OK1euVFlZmcaOHStJKi0t1aBBg1RZWamRI0e2+x60/QEAMApEbvP5fKqvrw/ZfD7fMW+9Z88epaWl6YwzztCMGTNUU1MjSaqqqlJzc7NycnKC52ZmZio9PV0VFRVhfTzCHwAAowiGv9vtlsPhCNncbnebt83OztaqVau0fv16LVu2TPv27dNFF12kw4cPy+PxKCEhQT169Ah5T0pKijweT1gfj7Y/AAAdqKioSIWFhSH77HZ7m+dOmDAh+N9DhgxRdna2+vXrp+eee05du3aN2JgIfwAADCL5hD+73X7MsD+RHj16aODAgfrggw80btw4NTU1qba2NqT693q9ba4ROB7a/gAAGEWw7f9dHDlyRB9++KFSU1OVlZWl+Ph4lZeXB49XV1erpqZGLpcrrOtS+QMAECNuueUWTZo0Sf369dOBAwe0YMECdenSRddcc40cDodmzZqlwsJC9ezZU0lJSSooKJDL5Qprpb9E+AMA0FqUnu3/8ccf65prrtFnn32mXr16acyYMaqsrFSvXr0kScXFxYqLi1NeXp58Pp9yc3O1dOnSsO9jCwQCMfHzBeMTfhLtIQAxZ33NjmgPAYhJcc7dHXr9sx58JGLX+uDWwhOf1MmY8wcAwGJo+wMAYBTFx/t2BsIfAACjmJgQ7ziEPwAABpH8nn8sYs4fAACLofIHAMDI5JU/4Q8AgAFtfwAAYCpU/gAAGJm88if8AQAwMnn40/YHAMBiqPwBADBgwR8AADAVwh8AAIuh7Q8AgJHJ2/6EPwAABmaf8yf8AQAwMnn4M+cPAIDFUPkDAGBk8sqf8AcAwMDsc/60/QEAsBgqfwAAjExe+RP+AAAY0PYHAACmQuUPAICRySt/wh8AACOThz9tfwAALIbKHwAAA7Mv+CP8AQAwIvwBALAYk4c/c/4AAFgMlT8AAAbM+QMAYDUmD3/a/gAAWAyVPwAABrT9AQCwGpOHP21/AAAshsofAAAjk1f+hD8AAAa2aA+gg9H2BwDAYqj8AQAwou0PAIC18FU/AACsxuThz5w/AAAxaOHChbLZbJozZ05wX2Njo/Lz85WcnKzu3bsrLy9PXq837GsT/gAAGAUiuH0L27dv1+OPP64hQ4aE7J87d67WrVun1atXa/PmzTpw4ICmTp0a9vUJfwAADGyByG3hOnLkiGbMmKEVK1bo1FNPDe6vq6vTypUr9cgjj2js2LHKyspSaWmptmzZosrKyrDuQfgDANCBfD6f6uvrQzafz3fM8/Pz8zVx4kTl5OSE7K+qqlJzc3PI/szMTKWnp6uioiKsMRH+AAAYRbDt73a75XA4Qja3293mbZ955hm99dZbbR73eDxKSEhQjx49QvanpKTI4/GE9fFY7Q8AgEEkv+pXVFSkwsLCkH12u73Vefv379dvfvMbbdy4UYmJiZEbQBsIfwAAOpDdbm8z7I2qqqp08OBBXXDBBcF9LS0tev3117VkyRJt2LBBTU1Nqq2tDan+vV6vnE5nWGMi/AEAMIrC9/wvu+wyvfPOOyH7rrvuOmVmZup3v/ud+vbtq/j4eJWXlysvL0+SVF1drZqaGrlcrrDuRfgDAGAQjSf8nXLKKTr33HND9nXr1k3JycnB/bNmzVJhYaF69uyppKQkFRQUyOVyaeTIkWHdi/AHAOB7ori4WHFxccrLy5PP51Nubq6WLl0a9nUIfwAAjGLk8b6bNm0KeZ2YmKiSkhKVlJR8p+sS/gAAGMVI+HcUwh8AAAOz/6ofD/kBAMBiqPwBADAyeeVP+AMAYGALmDv9afsDAGAxVP4AABiZu/An/AEAMGK1PwAAMBUqfwAAjExe+RP+AAAY0PYHAACmQuUPAICRySt/wh8AAAOzt/0JfwAAjEwe/sz5AwBgMVT+AAAY0PYHAMBq+GEfAABgJlT+AAAY0PYHAMBqTB7+tP0BALAYKn8AAAxs/miPoGMR/hZ13phMTfvtjzRgWIaS007VnVc+oi0v7gge/1tTWZvvW3F7mVY/8lJnDRPoVC0t0pJV0rq/SYc+l3qfJk25XLrp55LNdvScIre0dr0t5H1jLgxoxYOdP150IJO3/Ql/i0rsZtfetz/ShlWbtGB1Yavj0/veFPJ6RO5QFT5xg/53zbbOGiLQ6f5QJj3zguQukgb0l/5RLf3XQumUbtLPrvzmvIsuDOje2795nZDQ6UMFvhPC36K2b9il7Rt2HfP4F966kNejrsjSrk3vybPvYEcPDYiav78rjR0tXeo6+vr0VOmv5dI774eel5Ag9Uru/PGh85h9tT8L/nBCPXon6cIJQ7V+1aZoDwXoUMMGS5VvSfv2H339/gfSW+9IF2WHnrdtpzR6sjThp9KdD0tf1LW6FL7vAoHIbTGIyh8nNO5nF+vLw416Y832aA8F6FA3zJCOfClN/JnUJU5q8UtzfiFNGvfNOWMulMZdLPVxSjUHpEUrpF/eJv15qdSlS/TGjsgye+Uf8fDfv3+/FixYoCeffPKY5/h8Pvl8vpB9/kCL4mz8y4lFl197qV7985tq9jVHeyhAh3r5NemljdKD847O+f/zA8m95JuFf5I08bJvzh94pnT2mdL4a2zatjMgV1ZUhg2ELeJt/88//1xPPfXUcc9xu91yOBwh2z7/e5EeCiLg3NFnq+/ZaVpf+lq0hwJ0uIeWSb+YcTTgB54pTc6VZk6TnvjTsd/TN0061RFQzb86b5zoBIEIbjEo7Mr/xRdfPO7xvXv3nvAaRUVFKiwMXWE+NfmGcIeCTnD5dZdqd9Ve7X27JtpDATrcVz4pLvRbfOoSJ/mP851vz0Gptp4FgGZD299gypQpstlsChxnEYPNZjvmMUmy2+2y2+0h+2j5d67EbnalneUMvnb276Uzzu+nw58f0af7P5MknXxKV12cl63HbztO2QOYyA9GSY//UUpNOdr2f2+PtOo5aeoPjx5v+FJa+tTROf9ePY/O+T+0XEo/XRozIqpDB8ISdvinpqZq6dKlmjx5cpvHd+7cqawsJr5i3cCsM/TQK/OCr2986GeSpL89vVkP/eJxSdKlV7kkm02vPbslKmMEOtsdv5EeXSndXSx9/sXRuf6rrpB+NfPo8S5dpOoPpbXrpcNHpF6nSaOHS7+exXf9TSdGV+lHii1wvBK+DVdccYWGDh2qu+++u83ju3bt0rBhw+Q/Xp+sDeMTfhLW+YAVrK/ZceKTAAuKc+7u0OtfPDlyj2x8/YVbI3atSAm78r/11lvV0NBwzONnnXWWXnuNxWEAAMSqsMP/oosuOu7xbt266ZJLLvnWAwIAIOrM3fXnIT8AABiZfbU/j/cFAMBiqPwBADDym7v0J/wBADAyd/YT/gAAGDHnDwAATIXwBwDAKBCI3BaGZcuWaciQIUpKSlJSUpJcLpdefvnl4PHGxkbl5+crOTlZ3bt3V15enrxeb9gfj/AHAMDAFojcFo4+ffpo4cKFqqqq0o4dOzR27FhNnjxZ7777riRp7ty5WrdunVavXq3NmzfrwIEDmjp1atifjzl/AABixKRJk0Je33vvvVq2bJkqKyvVp08frVy5UmVlZRo7dqwkqbS0VIMGDVJlZaVGjhzZ7vtQ+QMAYBSI3Obz+VRfXx+y+Xy+Ew6hpaVFzzzzjBoaGuRyuVRVVaXm5mbl5OQEz8nMzFR6eroqKirC+niEPwAABrZAIGKb2+2Ww+EI2dxu9zHv/c4776h79+6y2+268cYbtWbNGp1zzjnyeDxKSEhQjx49Qs5PSUmRx+MJ6/PR9gcAoAMVFRWpsLAwZJ/dbj/m+WeffbZ27typuro6/eUvf9HMmTO1efPmiI6J8AcAwCi8X6U/LrvdftywN0pISNBZZ50lScrKytL27dv16KOPavr06WpqalJtbW1I9e/1euV0OsMaE21/AAAMItn2/678fr98Pp+ysrIUHx+v8vLy4LHq6mrV1NTI5XKFdU0qfwAAYkRRUZEmTJig9PR0HT58WGVlZdq0aZM2bNggh8OhWbNmqbCwUD179lRSUpIKCgrkcrnCWukvEf4AALQWpcf7Hjx4UD//+c/1ySefyOFwaMiQIdqwYYPGjRsnSSouLlZcXJzy8vLk8/mUm5urpUuXhn0fWyAQgZ5EBIxP+Em0hwDEnPU1O6I9BCAmxTl3d+j1L7v0vohdq3zTf0XsWpFC5Q8AgAE/7AMAAEyFyh8AAKPYmBHvMIQ/AAAGtgh+zz8W0fYHAMBiqPwBADCi7Q8AgMWYO/tp+wMAYDVU/gAAGETimfyxjPAHAMDI5OFP2x8AAIuh8gcAwMjk3/Mn/AEAMGDOHwAAqzF5+DPnDwCAxVD5AwBgZPLKn/AHAMDI5Av+aPsDAGAxVP4AABiw2h8AAKsxefjT9gcAwGKo/AEAMDJ55U/4AwBgZPLwp+0PAIDFUPkDAGBk8u/5E/4AABjwVT8AAKzG5OHPnD8AABZD5Q8AgJHf3JU/4Q8AgBFtfwAAYCZU/gAAGJm88if8AQAwMnn40/YHAMBiqPwBADBitT8AABYTMPfzfWn7AwBgMVT+AAAYmXzBH+EPAIARc/4AAFiMySt/5vwBALAYKn8AAIxMXvkT/gAAGJk8/Gn7AwAQI9xut0aMGKFTTjlFvXv31pQpU1RdXR1yTmNjo/Lz85WcnKzu3bsrLy9PXq83rPsQ/gAAGPn9kdvCsHnzZuXn56uyslIbN25Uc3Ozxo8fr4aGhuA5c+fO1bp167R69Wpt3rxZBw4c0NSpU8O6D21/AACMotT2X79+fcjrVatWqXfv3qqqqtLFF1+suro6rVy5UmVlZRo7dqwkqbS0VIMGDVJlZaVGjhzZrvtQ+QMA0IF8Pp/q6+tDNp/P16731tXVSZJ69uwpSaqqqlJzc7NycnKC52RmZio9PV0VFRXtHhPhDwCAUSAQsc3tdsvhcIRsbrf7hEPw+/2aM2eORo8erXPPPVeS5PF4lJCQoB49eoScm5KSIo/H0+6PR9sfAACjCD7hr6ioSIWFhSH77Hb7Cd+Xn5+vf/zjH3rjjTciNpZ/I/wBAOhAdru9XWH/n26++Wa99NJLev3119WnT5/gfqfTqaamJtXW1oZU/16vV06ns93Xp+0PAIBBIOCP2BbefQO6+eabtWbNGr366qvKyMgIOZ6VlaX4+HiVl5cH91VXV6umpkYul6vd96HyBwDAKEo/7JOfn6+ysjK98MILOuWUU4Lz+A6HQ127dpXD4dCsWbNUWFionj17KikpSQUFBXK5XO1e6S8R/gAAtBalr/otW7ZMknTppZeG7C8tLdW1114rSSouLlZcXJzy8vLk8/mUm5urpUuXhnUfwh8AgBgRaMcfHYmJiSopKVFJScm3vg/hDwCAUZhP5vu+IfwBADDih30AAICZUPkDAGAQoO0PAIDF0PYHAABmQuUPAIBRlB7y01kIfwAAjMJ8LO/3DW1/AAAshsofAACDAG1/AAAsxuRtf8IfAAADs1f+zPkDAGAxVP4AABiZvO1vC7Tn9wNhGT6fT263W0VFRbLb7dEeDhAT+HcBsyH8EaK+vl4Oh0N1dXVKSkqK9nCAmMC/C5gNc/4AAFgM4Q8AgMUQ/gAAWAzhjxB2u10LFixgURPwH/h3AbNhwR8AABZD5Q8AgMUQ/gAAWAzhDwCAxRD+AABYDOGPoJKSEvXv31+JiYnKzs7Wtm3boj0kIKpef/11TZo0SWlpabLZbFq7dm20hwREBOEPSdKzzz6rwsJCLViwQG+99ZbOP/985ebm6uDBg9EeGhA1DQ0NOv/881VSUhLtoQARxVf9IEnKzs7WiBEjtGTJEkmS3+9X3759VVBQoNtvvz3KowOiz2azac2aNZoyZUq0hwJ8Z1T+UFNTk6qqqpSTkxPcFxcXp5ycHFVUVERxZACAjkD4Q4cOHVJLS4tSUlJC9qekpMjj8URpVACAjkL4AwBgMYQ/dNppp6lLly7yer0h+71er5xOZ5RGBQDoKIQ/lJCQoKysLJWXlwf3+f1+lZeXy+VyRXFkAICOcFK0B4DYUFhYqJkzZ2r48OG68MILtWjRIjU0NOi6666L9tCAqDly5Ig++OCD4Ot9+/Zp586d6tmzp9LT06M4MuC74at+CFqyZIkefPBBeTweDR06VIsXL1Z2dna0hwVEzaZNm/SDH/yg1f6ZM2dq1apVnT8gIEIIfwAALIY5fwAALIbwBwDAYgh/AAAshvAHAMBiCH8AACyG8AcAwGIIfwAALIbwBwDAYgh/AAAshvAHAMBiCH8AACyG8AcAwGL+P3pk17YOMdP/AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -5839,7 +5840,7 @@ }, { "cell_type": "code", - "execution_count": 196, + "execution_count": 364, "metadata": {}, "outputs": [ { @@ -5848,12 +5849,12 @@ "text": [ " precision recall f1-score support\n", "\n", - " 0 0.71 0.74 0.73 61\n", - " 1 0.84 0.82 0.83 102\n", + " 0 0.73 0.74 0.73 61\n", + " 1 0.84 0.83 0.84 102\n", "\n", - " accuracy 0.79 163\n", - " macro avg 0.78 0.78 0.78 163\n", - "weighted avg 0.79 0.79 0.79 163\n", + " accuracy 0.80 163\n", + " macro avg 0.78 0.79 0.78 163\n", + "weighted avg 0.80 0.80 0.80 163\n", "\n" ] } @@ -5871,7 +5872,7 @@ }, { "cell_type": "code", - "execution_count": 197, + "execution_count": 365, "metadata": { "scrolled": true }, @@ -5906,7 +5907,7 @@ }, { "cell_type": "code", - "execution_count": 198, + "execution_count": 366, "metadata": {}, "outputs": [ { @@ -5938,7 +5939,7 @@ }, { "cell_type": "code", - "execution_count": 199, + "execution_count": 367, "metadata": { "scrolled": false }, @@ -5970,7 +5971,7 @@ }, { "cell_type": "code", - "execution_count": 200, + "execution_count": 368, "metadata": { "scrolled": true }, @@ -6160,7 +6161,7 @@ }, { "cell_type": "code", - "execution_count": 201, + "execution_count": 369, "metadata": {}, "outputs": [], "source": [ @@ -6176,7 +6177,7 @@ }, { "cell_type": "code", - "execution_count": 202, + "execution_count": 370, "metadata": {}, "outputs": [ { @@ -6200,7 +6201,7 @@ }, { "cell_type": "code", - "execution_count": 203, + "execution_count": 371, "metadata": {}, "outputs": [ { @@ -6232,7 +6233,7 @@ }, { "cell_type": "code", - "execution_count": 204, + "execution_count": 372, "metadata": {}, "outputs": [], "source": [ @@ -6248,7 +6249,7 @@ }, { "cell_type": "code", - "execution_count": 205, + "execution_count": 373, "metadata": {}, "outputs": [ { @@ -6272,16 +6273,16 @@ }, { "cell_type": "code", - "execution_count": 206, + "execution_count": 374, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 206, + "execution_count": 374, "metadata": {}, "output_type": "execute_result" } @@ -6303,7 +6304,7 @@ }, { "cell_type": "code", - "execution_count": 207, + "execution_count": 375, "metadata": { "scrolled": true }, @@ -6337,7 +6338,7 @@ }, { "cell_type": "code", - "execution_count": 208, + "execution_count": 376, "metadata": {}, "outputs": [], "source": [ @@ -6360,7 +6361,7 @@ }, { "cell_type": "code", - "execution_count": 209, + "execution_count": 377, "metadata": { "scrolled": false }, @@ -6369,19 +6370,19 @@ "name": "stdout", "output_type": "stream", "text": [ - "Dummy | score = 0.479 | time = 0.000s/0.000s\n", - "KNN(3) | score = 0.742 | time = 0.001s/0.005s\n", - "RBF SVM | score = 0.755 | time = 0.004s/0.002s\n", - "Decision Tree | score = 0.724 | time = 0.002s/0.001s\n", - "Random Forest | score = 0.736 | time = 0.012s/0.002s\n", - "Neural Net | score = 0.810 | time = 0.183s/0.001s\n", + "Dummy | score = 0.429 | time = 0.001s/0.001s\n", + "KNN(3) | score = 0.742 | time = 0.001s/0.004s\n", + "RBF SVM | score = 0.755 | time = 0.005s/0.002s\n", + "Decision Tree | score = 0.718 | time = 0.002s/0.001s\n", + "Random Forest | score = 0.761 | time = 0.015s/0.002s\n", + "Neural Net | score = 0.804 | time = 0.203s/0.001s\n", "AdaBoost | score = 0.779 | time = 0.072s/0.007s\n", "Naive Bayes | score = 0.804 | time = 0.001s/0.001s\n", "QDA | score = 0.816 | time = 0.001s/0.001s\n", "Linear SVC | score = 0.804 | time = 0.003s/0.001s\n", - "Linear SVM | score = 0.804 | time = 0.003s/0.002s\n", - "Gaussian Proc | score = 0.798 | time = 1.518s/0.004s\n", - "LogisticRegr | score = 0.816 | time = 0.004s/0.006s\n" + "Linear SVM | score = 0.804 | time = 0.004s/0.002s\n", + "Gaussian Proc | score = 0.798 | time = 0.956s/0.005s\n", + "LogisticRegr | score = 0.816 | time = 0.004s/0.001s\n" ] } ], @@ -6410,7 +6411,7 @@ }, { "cell_type": "code", - "execution_count": 210, + "execution_count": 378, "metadata": { "scrolled": true }, @@ -6451,16 +6452,16 @@ " \n", " \n", " 0\n", - " 0.951182\n", - " 0.999025\n", - " 0.353708\n", - " 0.74379\n", - " 0.550416\n", - " 0.641651\n", - " 0.138385\n", - " 0.791221\n", - " 0.535437\n", - " 0.404599\n", + " 0.484673\n", + " 0.426222\n", + " 0.366168\n", + " 0.619539\n", + " 0.806304\n", + " 0.69534\n", + " 0.041175\n", + " 0.752383\n", + " 0.328081\n", + " 0.438076\n", " \n", " \n", "\n", @@ -6468,22 +6469,22 @@ ], "text/plain": [ " FG_PCT_home_norm FT_PCT_home_norm FG3_PCT_home_norm AST_home_norm \\\n", - "0 0.951182 0.999025 0.353708 0.74379 \n", + "0 0.484673 0.426222 0.366168 0.619539 \n", "\n", " REB_home_norm FG_PCT_away_norm FT_PCT_away_norm FG3_PCT_away_norm \\\n", - "0 0.550416 0.641651 0.138385 0.791221 \n", + "0 0.806304 0.69534 0.041175 0.752383 \n", "\n", " AST_away_norm REB_away_norm \n", - "0 0.535437 0.404599 " + "0 0.328081 0.438076 " ] }, - "execution_count": 210, + "execution_count": 378, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "prediccion= pd.DataFrame() \n", + "prediccion = pd.DataFrame() \n", "\n", "for i in variables_elegidas_norm: \n", " prediccion[i]= [random.uniform(0,1)] \n", @@ -6500,7 +6501,7 @@ }, { "cell_type": "code", - "execution_count": 211, + "execution_count": 379, "metadata": {}, "outputs": [ { @@ -6517,6 +6518,980 @@ "else:\n", " print(\"El resultado ha sido 1. Gana el equipo visitante\")" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Podemos llegar a la conclusión de que despues de varios modelos entrenados, la precisión más alta ha sido el modelo de regresión logistica." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ahora vamos a predecir los puntos de Lebron James en un partido con un modelo de regresión" + ] + }, + { + "cell_type": "code", + "execution_count": 380, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GAME_IDTEAM_ABBREVIATIONMINFGMFGAFG_PCTFG3MFG3AFG3_PCTFTM...DREBREBASTSTLBLKTOPFPTSGAME_DATE_ESTSEASON
022200475LAL34:0011.021.00.5240.04.00.0009.0...6.06.011.00.02.02.00.031.02022-12-212022.0
122200451LAL36:3313.024.00.5421.04.00.2506.0...6.07.09.00.01.00.00.033.02022-12-182022.0
222200437LAL35:5613.021.00.6191.04.00.2503.0...8.09.04.02.00.02.02.030.02022-12-162022.0
322200413LAL42:4714.025.00.5603.011.00.2732.0...9.09.09.02.01.04.04.033.02022-12-132022.0
422200396LAL36:5214.024.00.5832.06.00.3335.0...4.05.05.01.00.01.01.035.02022-12-112022.0
\n", + "

5 rows × 23 columns

\n", + "
" + ], + "text/plain": [ + " GAME_ID TEAM_ABBREVIATION MIN FGM FGA FG_PCT FG3M FG3A FG3_PCT \\\n", + "0 22200475 LAL 34:00 11.0 21.0 0.524 0.0 4.0 0.000 \n", + "1 22200451 LAL 36:33 13.0 24.0 0.542 1.0 4.0 0.250 \n", + "2 22200437 LAL 35:56 13.0 21.0 0.619 1.0 4.0 0.250 \n", + "3 22200413 LAL 42:47 14.0 25.0 0.560 3.0 11.0 0.273 \n", + "4 22200396 LAL 36:52 14.0 24.0 0.583 2.0 6.0 0.333 \n", + "\n", + " FTM ... DREB REB AST STL BLK TO PF PTS GAME_DATE_EST SEASON \n", + "0 9.0 ... 6.0 6.0 11.0 0.0 2.0 2.0 0.0 31.0 2022-12-21 2022.0 \n", + "1 6.0 ... 6.0 7.0 9.0 0.0 1.0 0.0 0.0 33.0 2022-12-18 2022.0 \n", + "2 3.0 ... 8.0 9.0 4.0 2.0 0.0 2.0 2.0 30.0 2022-12-16 2022.0 \n", + "3 2.0 ... 9.0 9.0 9.0 2.0 1.0 4.0 4.0 33.0 2022-12-13 2022.0 \n", + "4 5.0 ... 4.0 5.0 5.0 1.0 0.0 1.0 1.0 35.0 2022-12-11 2022.0 \n", + "\n", + "[5 rows x 23 columns]" + ] + }, + "execution_count": 380, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stats_totales_lebron.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Borramos las columnas que no son relevantes" + ] + }, + { + "cell_type": "code", + "execution_count": 381, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FGMFGAFG_PCTFG3MFG3AFG3_PCTFTMFTAFT_PCTOREBDREBREBASTSTLBLKTOPFPTS
011.021.00.5240.04.00.0009.010.00.900.06.06.011.00.02.02.00.031.0
113.024.00.5421.04.00.2506.08.00.751.06.07.09.00.01.00.00.033.0
213.021.00.6191.04.00.2503.04.00.751.08.09.04.02.00.02.02.030.0
314.025.00.5603.011.00.2732.04.00.500.09.09.09.02.01.04.04.033.0
414.024.00.5832.06.00.3335.05.01.001.04.05.05.01.00.01.01.035.0
\n", + "
" + ], + "text/plain": [ + " FGM FGA FG_PCT FG3M FG3A FG3_PCT FTM FTA FT_PCT OREB DREB \\\n", + "0 11.0 21.0 0.524 0.0 4.0 0.000 9.0 10.0 0.90 0.0 6.0 \n", + "1 13.0 24.0 0.542 1.0 4.0 0.250 6.0 8.0 0.75 1.0 6.0 \n", + "2 13.0 21.0 0.619 1.0 4.0 0.250 3.0 4.0 0.75 1.0 8.0 \n", + "3 14.0 25.0 0.560 3.0 11.0 0.273 2.0 4.0 0.50 0.0 9.0 \n", + "4 14.0 24.0 0.583 2.0 6.0 0.333 5.0 5.0 1.00 1.0 4.0 \n", + "\n", + " REB AST STL BLK TO PF PTS \n", + "0 6.0 11.0 0.0 2.0 2.0 0.0 31.0 \n", + "1 7.0 9.0 0.0 1.0 0.0 0.0 33.0 \n", + "2 9.0 4.0 2.0 0.0 2.0 2.0 30.0 \n", + "3 9.0 9.0 2.0 1.0 4.0 4.0 33.0 \n", + "4 5.0 5.0 1.0 0.0 1.0 1.0 35.0 " + ] + }, + "execution_count": 381, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stats_totales_lebron = stats_totales_lebron.drop(['GAME_ID', 'TEAM_ABBREVIATION', 'MIN', 'GAME_DATE_EST', 'SEASON'], axis=1)\n", + "stats_totales_lebron.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vemos las columnas del dataframe" + ] + }, + { + "cell_type": "code", + "execution_count": 382, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['FGM', 'FGA', 'FG_PCT', 'FG3M', 'FG3A', 'FG3_PCT', 'FTM', 'FTA',\n", + " 'FT_PCT', 'OREB', 'DREB', 'REB', 'AST', 'STL', 'BLK', 'TO', 'PF',\n", + " 'PTS'],\n", + " dtype='object')" + ] + }, + "execution_count": 382, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stats_totales_lebron.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 383, + "metadata": {}, + "outputs": [], + "source": [ + "variables_escogidas = ['FGM', 'FGA', 'FG_PCT', 'FG3M', 'FG3A', 'FG3_PCT', 'FTM', 'FTA', 'FT_PCT', 'OREB', 'DREB', 'REB', 'AST', 'STL', 'BLK', 'TO', 'PF']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Añadimos las variables escogidas a la X y en la y el target de los puntos" + ] + }, + { + "cell_type": "code", + "execution_count": 384, + "metadata": {}, + "outputs": [], + "source": [ + "X_lebron = stats_totales_lebron[variables_escogidas]\n", + "y_lebron = stats_totales_lebron['PTS']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hacemos el split entre train y test" + ] + }, + { + "cell_type": "code", + "execution_count": 385, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(\n", + " X_lebron, \n", + " y_lebron, \n", + " test_size=0.3, random_state=42)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vemos las 8 variables más significativas" + ] + }, + { + "cell_type": "code", + "execution_count": 386, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1216, 8)\n", + "['FGM' 'FGA' 'FG_PCT' 'FG3M' 'FG3A' 'FG3_PCT' 'FTM' 'FTA']\n", + "Variable FGM: 4876.1375\n", + "Variable FGA: 1354.2733\n", + "Variable FG_PCT: 418.2969\n", + "Variable FG3M: 400.6381\n", + "Variable FG3A: 293.5535\n", + "Variable FG3_PCT: 168.7573\n", + "Variable FTM: 387.3912\n", + "Variable FTA: 373.7594\n", + "Variable FT_PCT: 41.2125\n", + "Variable OREB: 34.1568\n", + "Variable DREB: 45.1225\n", + "Variable REB: 69.6783\n", + "Variable AST: 0.8797\n", + "Variable STL: 11.7895\n", + "Variable BLK: 14.7718\n", + "Variable TO: 2.2874\n", + "Variable PF: 27.1240\n" + ] + } + ], + "source": [ + "from sklearn.feature_selection import SelectKBest, chi2, f_regression\n", + "\n", + "# Seleccionamos las 8 mejores variables\n", + "selector = SelectKBest(f_regression, k=8)\n", + "\n", + "X_select = selector.fit_transform(X_train, y_train)\n", + "\n", + "print(X_select.shape)\n", + "\n", + "print(selector.get_feature_names_out())\n", + "\n", + "for var, value in zip(selector.feature_names_in_, selector.scores_):\n", + " print('Variable %s: %.4f' % (var, value))\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Normalizamos las variables de X" + ] + }, + { + "cell_type": "code", + "execution_count": 387, + "metadata": {}, + "outputs": [], + "source": [ + "scaler_lebron = prep.MinMaxScaler()\n", + "X = scaler_lebron.fit_transform(X_train[variables_escogidas])\n", + "variables_escogidas_norm = ['FGM_norm', 'FGA_norm', 'FG_PCT_norm', 'FG3M_norm', 'FG3A_norm', 'FG3_PCT_norm', 'FTM_norm', 'FTA_norm', 'FT_PCT_norm', 'OREB_norm', 'DREB_norm', 'REB_norm', 'AST_norm', 'STL_norm', 'BLK_norm', 'TO_norm', 'PF_norm']\n", + "# Creamos columnas con datos normalizados\n", + "X_train[variables_escogidas_norm] = X\n", + "# Borramos las variables no normalizadas\n", + "X_train = X_train.select_dtypes(include = 'number').drop(variables_escogidas, axis = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 388, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FGM_normFGA_normFG_PCT_normFG3M_normFG3A_normFG3_PCT_normFTM_normFTA_normFT_PCT_normOREB_normDREB_normREB_normAST_normSTL_normBLK_normTO_normPF_norm
2870.200.2571430.3936170.0000.3076920.0000.1578950.1666670.7500.2857140.37500.4210530.5789470.1428570.60.1818180.333333
7120.550.4571430.6843970.1250.0769231.0000.3684210.3333330.8750.1428570.62500.5789470.1578950.4285710.20.4545450.166667
17230.700.6571430.6359340.6250.6153850.6250.2631580.3333330.6250.1428570.56250.5263160.3157890.0000000.00.0000000.166667
13590.650.4000000.9042550.5000.3846150.8000.1578950.1666670.7500.4285710.25000.3684210.1578950.0000000.20.3636360.166667
5910.650.4857140.7683220.1250.2307690.3330.4736840.4583330.8180.0000000.31250.2631580.2105260.2857140.40.0909090.666667
\n", + "
" + ], + "text/plain": [ + " FGM_norm FGA_norm FG_PCT_norm FG3M_norm FG3A_norm FG3_PCT_norm \\\n", + "287 0.20 0.257143 0.393617 0.000 0.307692 0.000 \n", + "712 0.55 0.457143 0.684397 0.125 0.076923 1.000 \n", + "1723 0.70 0.657143 0.635934 0.625 0.615385 0.625 \n", + "1359 0.65 0.400000 0.904255 0.500 0.384615 0.800 \n", + "591 0.65 0.485714 0.768322 0.125 0.230769 0.333 \n", + "\n", + " FTM_norm FTA_norm FT_PCT_norm OREB_norm DREB_norm REB_norm \\\n", + "287 0.157895 0.166667 0.750 0.285714 0.3750 0.421053 \n", + "712 0.368421 0.333333 0.875 0.142857 0.6250 0.578947 \n", + "1723 0.263158 0.333333 0.625 0.142857 0.5625 0.526316 \n", + "1359 0.157895 0.166667 0.750 0.428571 0.2500 0.368421 \n", + "591 0.473684 0.458333 0.818 0.000000 0.3125 0.263158 \n", + "\n", + " AST_norm STL_norm BLK_norm TO_norm PF_norm \n", + "287 0.578947 0.142857 0.6 0.181818 0.333333 \n", + "712 0.157895 0.428571 0.2 0.454545 0.166667 \n", + "1723 0.315789 0.000000 0.0 0.000000 0.166667 \n", + "1359 0.157895 0.000000 0.2 0.363636 0.166667 \n", + "591 0.210526 0.285714 0.4 0.090909 0.666667 " + ] + }, + "execution_count": 388, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 389, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FGM_normFGA_normFG_PCT_normFG3M_normFG3A_normFG3_PCT_normFTM_normFTA_normFT_PCT_normOREB_normDREB_normREB_normAST_normSTL_normBLK_normTO_normPF_norm
4820.500.4571430.6217490.2500.3846150.4000.3684210.3750000.7780.1428570.25000.2631580.2631580.0000000.20.3636360.666667
15060.400.4000000.5567380.1250.2307690.3330.0526320.0833330.5000.0000000.25000.2105260.3684210.4285710.00.2727270.333333
9500.450.3714290.6654850.2500.3076920.5000.1578950.2083330.6000.0000000.18750.1578950.4736840.2857140.00.3636360.166667
10050.650.6285710.6146570.1250.6923080.1110.5263160.5416670.7690.0000000.31250.2631580.4736840.2857140.20.3636360.500000
7050.600.5428570.6442080.0000.1538460.0000.1052630.1666670.5000.0000000.18750.1578950.2105260.4285710.20.3636360.500000
\n", + "
" + ], + "text/plain": [ + " FGM_norm FGA_norm FG_PCT_norm FG3M_norm FG3A_norm FG3_PCT_norm \\\n", + "482 0.50 0.457143 0.621749 0.250 0.384615 0.400 \n", + "1506 0.40 0.400000 0.556738 0.125 0.230769 0.333 \n", + "950 0.45 0.371429 0.665485 0.250 0.307692 0.500 \n", + "1005 0.65 0.628571 0.614657 0.125 0.692308 0.111 \n", + "705 0.60 0.542857 0.644208 0.000 0.153846 0.000 \n", + "\n", + " FTM_norm FTA_norm FT_PCT_norm OREB_norm DREB_norm REB_norm \\\n", + "482 0.368421 0.375000 0.778 0.142857 0.2500 0.263158 \n", + "1506 0.052632 0.083333 0.500 0.000000 0.2500 0.210526 \n", + "950 0.157895 0.208333 0.600 0.000000 0.1875 0.157895 \n", + "1005 0.526316 0.541667 0.769 0.000000 0.3125 0.263158 \n", + "705 0.105263 0.166667 0.500 0.000000 0.1875 0.157895 \n", + "\n", + " AST_norm STL_norm BLK_norm TO_norm PF_norm \n", + "482 0.263158 0.000000 0.2 0.363636 0.666667 \n", + "1506 0.368421 0.428571 0.0 0.272727 0.333333 \n", + "950 0.473684 0.285714 0.0 0.363636 0.166667 \n", + "1005 0.473684 0.285714 0.2 0.363636 0.500000 \n", + "705 0.210526 0.428571 0.2 0.363636 0.500000 " + ] + }, + "execution_count": 389, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = scaler_lebron.transform(X_test[variables_escogidas])\n", + "X_test[variables_escogidas_norm] = X\n", + "X_test = X_test.select_dtypes(include = 'number').drop(variables_escogidas, axis = 1)\n", + "X_test.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Una vez normalizadas las columnas de X en train y test, probamos un modelo de arbol de decisiones" + ] + }, + { + "cell_type": "code", + "execution_count": 390, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Regresión\n", + "----------\n", + "MAE en test: 0.912\n", + "MAPE en test: 0.036\n", + "\n", + "R Squared Score is: 0.9654147310205599\n" + ] + } + ], + "source": [ + "from sklearn.tree import DecisionTreeRegressor\n", + "# Los inicialiamos con sus parámetros por defecto (salvo la semilla)\n", + "tree_reg = DecisionTreeRegressor(random_state = 42)\n", + "\n", + "# Los entrenamos...\n", + "tree_reg.fit(X_train, y_train)\n", + "\n", + "# Y los evaluamos en el conjunto de test\n", + "print('Regresión')\n", + "print('-'*10)\n", + "\n", + "preds = tree_reg.predict(X_test)\n", + "\n", + "mae_test = mean_absolute_error(y_test, preds)\n", + "mape_test = mean_absolute_percentage_error(y_test, preds)\n", + "\n", + "print('MAE en test: %.3f' % mae_test)\n", + "print('MAPE en test: %.3f' % mape_test)\n", + "print('')\n", + "print('R Squared Score is:', r2_score(y_test, preds))" + ] } ], "metadata": { @@ -6535,7 +7510,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.9.13" }, "vscode": { "interpreter": {