-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpParticles_s_p_simultaneous.cpp
162 lines (100 loc) · 3.04 KB
/
pParticles_s_p_simultaneous.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// pParticles
// no weigths are used, basically
// Pressure is used in order to enforce incompressibility
// An additional field, s, is used to enforce const moments of inertia
#include"pParticles.h"
#include"linear.h"
#include"simu.h"
sim_data simu;
int main() {
// TODO: read better from parameter file
int init_max_iters; cin >> init_max_iters; // = 40;
FT init_tol2 ; cin >> init_tol2 ; // = 1e-3;
int inner_max_iters; cin >> inner_max_iters; // = 10;
FT disp_tol; cin >> disp_tol; // = 1e-6;
int s_iters; cin >> s_iters; //= 10;
int p_iters; cin >> p_iters; //= 10;
FT total_time = 1/( 2 * 3.14 * 0.2) ;
const std::string particle_file("particles.dat");
const std::string diagram_file("diagram.dat");
Triangulation T;
cout << "Creating point cloud" << endl;
// simu.do_perturb(0.3);
create( T , 1.0 );
number( T );
// set_vels_rotating( T );
// set_vels_Lamb_Oseen( T );
linear algebra( T );
// Init loop!
int init_iter=0;
for( ; init_iter < init_max_iters ; ++init_iter) {
volumes( T );
// copy_weights( T ) ;
// algebra.solve_for_weights();
FT dd = lloyds( T ) ;
cout << " init loop , iter " << init_iter << " dd = " << dd << endl;
if( dd < init_tol2) break;
}
// copy_weights( T ) ;
cout << "Init loop converged in " << init_iter << " steps " << endl;
set_vels_Gresho( T );
volumes( T );
algebra.copy( sfield_list::vol, sfield_list::vol0);
algebra.copy( sfield_list::I, sfield_list::I0);
FT d0;
FT dt=0.001;
cin >> dt ;
simu.set_dt( dt );
// half-step leapfrog
// FT dt2 = dt / 2.0 ;
// whole step
FT dt2 = dt / 2.0 ;
// algebra.solve_for_weights();
draw( T , particle_file );
draw_diagram( T , diagram_file );
std::ofstream log_file;
log_file.open("main.log");
do {
simu.next_step();
simu.advance_time( );
int in_iter = 1 , s_it = 1 , p_it= 1;
// volumes( T );
backup( T );
// displ = move( T , dt2 , d0 );
algebra.reset_s();
algebra.reset_p();
algebra.u_star( );
FT displ_p = 0 , displ_s = 0 ;
for ( ; in_iter <= inner_max_iters ; in_iter++) {
displ_p = move( T , dt , d0 );
cout
<< "********" << endl
<< "P S Iter " << in_iter
<< " . Moved from previous (rel.): " << displ_p <<
" ; from original (rel.): " << d0
<< endl ;
volumes( T );
algebra.fill_Delta_DD();
algebra.p_equation( dt );
algebra.s_equation( dt );
algebra.u_add_grads( dt2 );
if( displ_p < disp_tol ) break;
}
///////////// end p iter
cout
<< "Whole step "
<< " : disp " << displ_p << endl ;
algebra.u_add_grads( dt );
draw( T , particle_file );
draw_diagram( T , diagram_file );
log_file
<< simu.current_step() << " "
<< simu.time() << " "
<< " iters = " << in_iter
<< " T = " << kinetic_E(T)
<< " L2_vel = " << L2_vel_Gresho(T)
<< endl ;
} while ( simu.time() < total_time );
log_file.close();
return 0;
}