forked from bcaitech1/p2-klue-ddooom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data.py
223 lines (171 loc) · 7.26 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import pickle as pickle
from easydict import EasyDict
import json
import pandas as pd
import numpy as np
import torch
from collections import Counter
from transformers import AutoTokenizer, XLMRobertaTokenizer
from sklearn.model_selection import train_test_split
def preprocessing_dataset(dataset, label_type):
labels = []
for label in dataset[8]:
if label == 'blind':
labels.append(100)
else:
labels.append(label_type[label])
preprocessed_dataset = pd.DataFrame(
{'sentence':dataset[1],
'entity01':dataset[2],
'entity02':dataset[5],
'label':labels})
return preprocessed_dataset
def set_entitytoken_dataset(dataset, label_type):
sentences = []
labels = []
for data in np.array(dataset):
if data[8] == 'blind':
labels.append(100)
else:
labels.append(label_type[data[8]])
list_sentence = list(data[1])
ent1_idx = data[3]
ent2_idx = data[6]
if ent1_idx > ent2_idx:
list_sentence.insert(data[4]+1, '[/ENT]')
list_sentence.insert(data[3], '[ENT]')
list_sentence.insert(data[7]+1, '[/ENT]')
list_sentence.insert(data[6], '[ENT]')
else:
list_sentence.insert(data[7]+1, '[/ENT]')
list_sentence.insert(data[6], '[ENT]')
list_sentence.insert(data[4]+1, '[/ENT]')
list_sentence.insert(data[3], '[ENT]')
sentences.append(''.join(list_sentence))
preprocessed_dataset = pd.DataFrame(
{'sentence':sentences,
'entity01':dataset[2],
'entity02':dataset[5],
'label':labels})
return preprocessed_dataset
def load_data(args):
with open(args.labeltype_path, 'rb') as f:
label_type = pickle.load(f)
dataset = pd.read_csv(args.dataset_path, delimiter='\t', header=None)
labels_cnt = Counter(dataset[8])
sorted_labels_cnt = sorted(labels_cnt.items(), key=lambda x:x[1], reverse=True)
sorted_labels = [cls[0] for cls in sorted_labels_cnt]
use_labels = sorted_labels[:args.num_labels]
dataset = list(filter(lambda x:x[8] in use_labels, np.array(dataset)))
dataset = pd.DataFrame(dataset)
if args.preprocess_type == 0:
dataset = preprocessing_dataset(dataset, label_type)
elif args.preprocess_type == 1:
dataset = set_entitytoken_dataset(dataset, label_type)
return dataset
def split_dataset(dataset, args):
X = np.array(dataset)[:, :-1]
y = np.array(dataset['label'].values)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=args.val_size, random_state=args.seed)
train_dataset = pd.DataFrame({'sentence':X_train[:,0], 'entity01':X_train[:,1], 'entity02':X_train[:,2], 'label':y_train})
val_dataset = pd.DataFrame({'sentence':X_val[:,0], 'entity01':X_val[:,1], 'entity02':X_val[:,2], 'label':y_val})
return train_dataset, val_dataset
def tokenized_dataset(data, tokenizer, args):
concat_entity = []
if 'bert' in args.model_name.split('-'):
sep_token = '[SEP]'
elif 'xlm' in args.model_name.split('-'):
sep_token = '</s>'
if args.preprocess_type == 0:
for e01, e02 in zip(data['entity01'], data['entity02']):
temp = e01 + sep_token + e02
concat_entity.append(temp)
elif args.preprocess_type == 1:
for e01, e02 in zip(data['entity01'], data['entity02']):
temp = '[ENT]' + e01 + '[/ENT]' + sep_token + '[ENT]' + e02 + '[/ENT]'
concat_entity.append(temp)
tokenized_sentences = tokenizer(
concat_entity,
list(data['sentence']),
return_tensors="pt",
padding=True,
truncation='only_second',
max_length=args.tokenize_maxlen,
add_special_tokens=True
)
return tokenized_sentences
class MyDataset(torch.utils.data.Dataset):
def __init__(self, tokenized_data, labels, args):
super(MyDataset, self).__init__()
self.tokenized_data = tokenized_data
self.labels = labels
self.preprocess_type = args.preprocess_type
self.maxlen = args.tokenize_maxlen
def __getitem__(self, index):
item = {key: torch.tensor(val[index]) for key, val in self.tokenized_data.items()}
# if self.preprocess_type == 1:
# entity_vec = torch.zeros(self.maxlen, dtype=int)
# start_idx = 0
# pass_entity = 0
# for idx, token in enumerate(self.tokenized_data['input_ids'][index]):
# if token == 119547 and pass_entity > 1: # [ENT] : 119547
# start_idx = idx
# elif token == 119548: # [\ENT] : 119548
# if pass_entity > 1:
# entity_vec[start_idx+1:idx] = 1
# pass_entity += 1
# item['token_type_ids'] = item['token_type_ids'] + entity_vec
item['labels'] = torch.tensor(self.labels[index])
return item
def __len__(self):
return len(self.labels)
if __name__ == '__main__':
args = EasyDict()
with open('/opt/ml/MyBaseline/config/xlm_config01.json', 'r') as f:
args.update(json.load(f))
# check train dataset
pd.set_option("max_colwidth", 10)
# check dataset function and sentence
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
print(len(tokenizer))
tokenizer.add_special_tokens({'additional_special_tokens': ['[ENT]', '[/ENT]']})
print(len(tokenizer))
train_data = load_data(args)
train_label = train_data['label'].values
# set train dataset
train_tokenized = tokenized_dataset(train_data, tokenizer, args)
print(train_tokenized['input_ids'][0])
# print(train_tokenized['token_type_ids'][0])
print(train_tokenized['attention_mask'][0])
print(tokenizer.tokenize(train_data['sentence'][0]+'</s>'))
print(tokenizer.decode(train_tokenized['input_ids'][0]))
train_dataset = MyDataset(train_tokenized, train_label, args)
# print(train_dataset[0])
print(train_dataset[0])
'''
# check tokenizing
MODEL_NAME = "bert-base-multilingual-cased"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.add_special_tokens({'additional_special_tokens': ['[ENT]', '[/ENT]']})
concat_entity = []
for e01, e02 in zip(dataset01['entity01'], dataset01['entity02']):
temp = e01 + '[SEP]' + e02
concat_entity.append(temp)
print(tokenizer.tokenize(concat_entity[0], list(dataset01['sentence'])[0]))
# check max length of tokenized vector
# len_list = []
# for ent, sen in zip(concat_entity, list(dataset01['sentence'])):
# tokenized_sen = tokenizer.tokenize(ent, sen)
# len_list.append(len(tokenized_sen))
# print(max(len_list), np.mean(len_list)) # 328 / 75.045
# check tokenized_dataset function
tokenized_data = tokenized_dataset(dataset01, tokenizer, 1)
print(tokenizer.decode(tokenized_data['input_ids'][0]))
print(tokenized_data['input_ids'][0])
print(tokenized_data['token_type_ids'][0])
print(tokenized_data['attention_mask'][0])
train_dataset = MyDataset(tokenized_data, dataset01['label'], 1, 100)
print(train_dataset[0])
'''