forked from bcaitech1/p2-klue-ddooom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_QA.py
123 lines (98 loc) · 3.6 KB
/
train_QA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import warnings
import gc
import random
import pandas as pd
import numpy as np
import torch
from transformers import AutoTokenizer, BertConfig, BertForQuestionAnswering, Trainer, TrainingArguments
def killmemory():
gc.collect()
torch.cuda.empty_cache()
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
class MyDataset(torch.utils.data.Dataset):
def __init__(self, tokenized_data, start_idxs, end_idxs):
super(MyDataset, self).__init__()
self.tokenized_data = tokenized_data
self.start_idxs = start_idxs
self.end_idxs = end_idxs
def __getitem__(self, index):
item = {key: torch.tensor(val[index]) for key, val in self.tokenized_data.items()}
item['start_positions'] = torch.tensor(self.start_idxs[index])
item['end_positions'] = torch.tensor(self.end_idxs[index])
return item
def __len__(self):
return len(self.start_idxs)
if __name__=='__main__':
# setting
killmemory()
seed_everything(7)
warnings.filterwarnings(action='ignore')
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# dataset
dataset_path = "/opt/ml/input/data/train/train_QA.tsv"
train_data = pd.read_csv(dataset_path, delimiter='\t')
questions = list(train_data['question'])
texts = list(train_data['sentence'])
labels = list(train_data['label'])
model_name = "bert-base-multilingual-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenized_data = tokenizer(texts,
questions,
return_tensors="pt",
padding=True,
truncation="only_first",
max_length=100,
add_special_tokens=True)
tokenized_label = tokenizer(labels, add_special_tokens=False)['input_ids']
start_idxs = []
end_idxs = []
for data, label in zip(tokenized_data['input_ids'], tokenized_label):
data = data.cpu().numpy()
label = np.array(label)
start_idx = 0
end_idx = 0
correct = 0
start_idx_list = np.where(data==label[0])[0]
for idx in start_idx_list:
label_in_text = data[idx:idx+len(label)]
if list(label_in_text) == list(label):
start_idx = idx
end_idx = idx+len(label)-1
start_idxs.append(start_idx)
end_idxs.append(end_idx)
train_dataset = MyDataset(tokenized_data, start_idxs, end_idxs)
# print(tokenized_data['input_ids'][0])
# print(tokenized_data['token_type_ids'][0])
# print(tokenized_data['attention_mask'][0])
# print(tokenizer.decode(tokenized_data['input_ids'][0]))
# model
model_config = BertConfig.from_pretrained(model_name)
model = BertForQuestionAnswering.from_pretrained(model_name, config=model_config)
model.to(device)
# training
training_args = TrainingArguments(
output_dir='./results/useQA',
save_total_limit=5,
save_steps=500,
num_train_epochs=10,
learning_rate=5e-5,
per_device_train_batch_size=16,
warmup_steps=300,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=100,
label_smoothing_factor=0.5
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset
)
trainer.train()