-
Notifications
You must be signed in to change notification settings - Fork 1
/
Q14_4_sum.cpp
58 lines (48 loc) · 1.8 KB
/
Q14_4_sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
// Given an array nums of n integers, return an array of all the unique quadruplets [nums[a], nums[b], nums[c], nums[d]] such that:
// 0 <= a, b, c, d < n
// a, b, c, and d are distinct.
// nums[a] + nums[b] + nums[c] + nums[d] == target
// You may return the answer in any order.
// Example 1:
// Input: nums = [1,0,-1,0,-2,2], target = 0
// Output: [[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
// Example 2:
// Input: nums = [2,2,2,2,2], target = 8
// Output: [[2,2,2,2]]
#include<bits/stdc++.h>
using namespace std;
// Sorting based solution
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
int n = nums.size();
if(n < 4) return {};
sort(nums.begin(), nums.end());
vector<vector<int>> ans;
for(int i = 0; i < n; i++) {
for(int j = i + 1; j < n; j++) {
int p = j + 1;
int q = n - 1;
long long currSum = nums[i] + nums[j];
long long remSum = target - currSum;
while(p < q) {
long long sum = nums[p] + nums[q];
if(sum == remSum) {
ans.push_back({nums[i], nums[j], nums[p], nums[q]});
p++;
q--;
while(p < q && nums[p] == nums[p - 1]) p++;
while(p < q && nums[q] == nums[q + 1]) q--;
}
else if(sum > remSum) q--;
else p++;
}
while(j < n - 1 && nums[j] == nums[j + 1]) j++;
}
while(i < n - 1 && nums[i] == nums[i + 1]) i++;
}
return ans;
}
};
// Time Complexity : O(nlogn) + O(n ^ 3) = O(n ^ 3)
// Space Complexity : O(1) [The vector "ans" is just for returning the answer]