-
Notifications
You must be signed in to change notification settings - Fork 1
/
Q17_spiral_matrix.cpp
52 lines (42 loc) · 1.39 KB
/
Q17_spiral_matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
// Given an m x n matrix, return all elements of the matrix in spiral order.
// Example 1:
// Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
// Output: [1,2,3,6,9,8,7,4,5]
// Example 2:
// Input: matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
// Output: [1,2,3,4,8,12,11,10,9,5,6,7]
#include<bits/stdc++.h>
using namespace std;
class Solution {
public:
vector<int> spiralOrder(vector<vector<int>>& matrix) {
int n = matrix.size();
int m = matrix[0].size();
vector<int> ans;
int top = 0;
int bottom = n - 1;
int left = 0;
int right = m - 1;
while(top <= bottom && left <= right) {
// Top Row
for(int i = left; i <= right; i++) ans.push_back(matrix[top][i]);
top++;
// Right Column
for(int i = top; i <= bottom; i++) ans.push_back(matrix[i][right]);
right--;
// Bottom Row
if(top <= bottom) {
for(int i = right; i >= left; i--) ans.push_back(matrix[bottom][i]);
bottom--;
}
// Left Column
if(left <= right) {
for(int i = bottom; i >= top; i--) ans.push_back(matrix[i][left]);
left++;
}
}
return ans;
}
};
// Time Complexity : O(n * m)
// Space Complexity : O(1) [The vector "ans" is just for returning the answer]