-
Notifications
You must be signed in to change notification settings - Fork 1
/
Q12_find_eventual_safe_states.cpp
64 lines (54 loc) · 2.15 KB
/
Q12_find_eventual_safe_states.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
// There is a directed graph of n nodes with each node labeled from 0 to n - 1. The graph is represented by a 0-indexed 2D integer array graph where graph[i] is an integer array of nodes adjacent to node i, meaning there is an edge from node i to each node in graph[i].
// A node is a terminal node if there are no outgoing edges. A node is a safe node if every possible path starting from that node leads to a terminal node (or another safe node).
// Return an array containing all the safe nodes of the graph. The answer should be sorted in ascending order.
// Example 1:
// Illustration of graph
// Input: graph = [[1,2],[2,3],[5],[0],[5],[],[]]
// Output: [2,4,5,6]
// Explanation: The given graph is shown above.
// Nodes 5 and 6 are terminal nodes as there are no outgoing edges from either of them.
// Every path starting at nodes 2, 4, 5, and 6 all lead to either node 5 or 6.
// Example 2:
// Input: graph = [[1,2,3,4],[1,2],[3,4],[0,4],[]]
// Output: [4]
// Explanation:
// Only node 4 is a terminal node, and every path starting at node 4 leads to node 4.
#include<bits/stdc++.h>
using namespace std;
// Important question
// Topological Sort
class Solution {
public:
void reverseGraph(vector<int> adj[], vector<int> &indegree, vector<vector<int>>& graph){
for(int i = 0; i < graph.size(); i++){
for(int &v : graph[i]){
adj[v].push_back(i);
indegree[i]++;
}
}
}
vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
int n = graph.size();
vector<int> ans;
vector<int> adj[n];
vector<int> indegree(n);
reverseGraph(adj, indegree, graph);
queue<int> q;
for(int i = 0; i < n; i++) {
if(indegree[i] == 0) q.push(i);
}
while(!q.empty()){
int u = q.front();
q.pop();
ans.push_back(u);
for(int &v: adj[u]) {
if(--indegree[v] == 0) q.push(v);
}
}
sort(ans.begin(),ans.end());
return ans;
}
};
// Time Complexity : O(V + E)
// Space Complexity : O(V + E)
// where, E = no. of edges and V = no. of vertices