-
Notifications
You must be signed in to change notification settings - Fork 1
/
Q25_cheapest_flights_within_k_stops.cpp
54 lines (47 loc) · 2.07 KB
/
Q25_cheapest_flights_within_k_stops.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// There are n cities connected by some number of flights. You are given an array flights where flights[i] = [fromi, toi, pricei] indicates that there is a flight from city fromi to city toi with cost pricei.
// You are also given three integers src, dst, and k, return the cheapest price from src to dst with at most k stops. If there is no such route, return -1.
// Example 1:
// Input: n = 4, flights = [[0,1,100],[1,2,100],[2,0,100],[1,3,600],[2,3,200]], src = 0, dst = 3, k = 1
// Output: 700
// Explanation:
// The graph is shown above.
// The optimal path with at most 1 stop from city 0 to 3 is marked in red and has cost 100 + 600 = 700.
// Note that the path through cities [0,1,2,3] is cheaper but is invalid because it uses 2 stops.
// Example 2:
// Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 1
// Output: 200
// Explanation:
// The graph is shown above.
// The optimal path with at most 1 stop from city 0 to 2 is marked in red and has cost 100 + 100 = 200.
// Example 3:
// Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 0
// Output: 500
// Explanation:
// The graph is shown above.
// The optimal path with no stops from city 0 to 2 is marked in red and has cost 500.
#include<bits/stdc++.h>
using namespace std;
class Solution {
public:
//Bellman Ford Algorithm
int shortestPath(vector<vector<int>>& flights,int src,int dst,int k,int n){
vector<int> dist(n, INT_MAX);
dist[src] = 0;
for(int count = 0; count <= k; count++){
vector<int> temp = dist;
for(vector<int>& v: flights){
if(dist[v[0]] == INT_MAX)
continue;
if(temp[v[1]] > dist[v[0]] + v[2])
temp[v[1]] = dist[v[0]] + v[2];
}
dist = temp;
}
return (dist[dst] == INT_MAX ? -1 : dist[dst]);
}
int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int k) {
return shortestPath(flights, src, dst, k, n);
}
};
// Time Complexity : O(K * E)
// Space Complexity : O(V)