-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathQ2_dfs_traversal_of_graph.cpp
54 lines (47 loc) · 1.45 KB
/
Q2_dfs_traversal_of_graph.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// You are given a connected undirected graph. Perform a Depth First Traversal of the graph.
// Note: Use a recursive approach to find the DFS traversal of the graph starting from the 0th vertex from left to right according to the graph.
// Example 1:
// Input: V = 5 , adj = [[2,3,1] , [0], [0,4], [0], [2]]
// Output: 0 2 4 3 1
// Explanation:
// 0 is connected to 2, 3, 1.
// 1 is connected to 0.
// 2 is connected to 0 and 4.
// 3 is connected to 0.
// 4 is connected to 2.
// so starting from 0, it will go to 2 then 4,
// and then 3 and 1.
// Thus dfs will be 0 2 4 3 1.
// Example 2:
// Input: V = 4, adj = [[1,3], [2,0], [1], [0]]
// Output: 0 1 2 3
// Explanation:
// 0 is connected to 1 , 3.
// 1 is connected to 0, 2.
// 2 is connected to 1.
// 3 is connected to 0.
// so starting from 0, it will go to 1 then 2
// then back to 0 then 0 to 3
// thus dfs will be 0 1 2 3.
#include<bits/stdc++.h>
using namespace std;
class Solution {
private:
vector<int> ans;
public:
void dfs(vector<int> adj[], vector<int>& visited, int src) {
visited[src] = 1;
ans.push_back(src);
for(int &v : adj[src]) {
if(!visited[v]) dfs(adj, visited, v);
}
}
vector<int> dfsOfGraph(int V, vector<int> adj[]) {
vector<int> visited(V, 0);
dfs(adj, visited, 0);
return ans;
}
};
// Time Complexity : O(V + E)
// Space Complexity : O(V)
// where, E = no. of edges and V = no. of vertices