-
Notifications
You must be signed in to change notification settings - Fork 1
/
Q15_balanced_binary_tree.cpp
52 lines (41 loc) · 1.31 KB
/
Q15_balanced_binary_tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
// Given a binary tree, determine if it is height-balanced.
// A height-balanced binary tree is a binary tree in which the depth of the two subtrees of every node never differs by more than one..
// Example 1:
// Input: root = [3,9,20,null,null,15,7]
// Output: true
// Example 2:
// Input: root = [1,2,2,3,3,null,null,4,4]
// Output: false
// Example 3:
// Input: root = []
// Output: true
#include<bits/stdc++.h>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
class Solution {
private:
int checkBalanced(TreeNode* root) {
if(!root) return 0;
int leftHeight = checkBalanced(root->left);
if(leftHeight == -1) return -1;
int rightHeight = checkBalanced(root->right);
if(rightHeight == -1) return -1;
if(abs(leftHeight - rightHeight) > 1) return -1;
return max(leftHeight, rightHeight) + 1;
}
public:
bool isBalanced(TreeNode* root) {
int ans = checkBalanced(root);
return ans == -1 ? 0 : 1;
}
};
// Time Complexity : O(n)
// Space Complexity : O(h)
// where h is the height of the tree