-
Notifications
You must be signed in to change notification settings - Fork 1
/
Q20_lowest_common_ancestor_of_a_binary_tree.cpp
54 lines (43 loc) · 1.68 KB
/
Q20_lowest_common_ancestor_of_a_binary_tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
// According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
// Example 1:
// Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
// Output: 3
// Explanation: The LCA of nodes 5 and 1 is 3.
// Example 2:
// Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
// Output: 5
// Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
// Example 3:
// Input: root = [1,2], p = 1, q = 2
// Output: 1
#include<bits/stdc++.h>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
// Very Important question
class Solution {
private:
TreeNode* findLCA(TreeNode* root, TreeNode* p, TreeNode* q) {
if(!root) return NULL;
if(root->val == p->val || root->val == q->val) return root;
TreeNode* lca1 = findLCA(root->left, p, q);
TreeNode* lca2 = findLCA(root->right, p, q);
if(lca1 && lca2) return root;
if(lca1) return lca1;
return lca2;
}
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
return findLCA(root, p, q);
}
};
// Time Complexity : O(n)
// Space Complexity : O(h)
// where h is the height of the tree