-
Notifications
You must be signed in to change notification settings - Fork 1
/
Q23_validate_binary_search_tree.cpp
51 lines (40 loc) · 1.45 KB
/
Q23_validate_binary_search_tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
// Given the root of a binary tree, determine if it is a valid binary search tree (BST).
// A valid BST is defined as follows:
// The left subtree of a node contains only nodes with keys less than the node's key.
// The right subtree of a node contains only nodes with keys greater than the node's key.
// Both the left and right subtrees must also be binary search trees.
// Example 1:
// Input: root = [2,1,3]
// Output: true
// Example 2:
// Input: root = [5,1,4,null,null,3,6]
// Output: false
// Explanation: The root node's value is 5 but its right child's value is 4.
#include<bits/stdc++.h>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
// Important question
class Solution {
private:
bool validateBST(TreeNode* root, long mini, long maxi) {
if(!root) return true;
if(root->val >= maxi || root->val <= mini) return false;
bool left = validateBST(root->left, mini, root->val);
bool right = validateBST(root->right, root->val, maxi);
return left && right;
}
public:
bool isValidBST(TreeNode* root) {
return validateBST(root, LONG_MIN, LONG_MAX);
}
};
// Time Complexity : O(n)
// Space Complexity : O(h)
// where h is the height of the tree