-
Notifications
You must be signed in to change notification settings - Fork 1
/
Q25_redundant_connection.cpp
70 lines (60 loc) · 2.15 KB
/
Q25_redundant_connection.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// In this problem, a tree is an undirected graph that is connected and has no cycles.
// You are given a graph that started as a tree with n nodes labeled from 1 to n, with one additional edge added. The added edge has two different vertices chosen from 1 to n, and was not an edge that already existed. The graph is represented as an array edges of length n where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi in the graph.
// Return an edge that can be removed so that the resulting graph is a tree of n nodes. If there are multiple answers, return the answer that occurs last in the input.
// Example 1:
// Input: edges = [[1,2],[1,3],[2,3]]
// Output: [2,3]
// Example 2:
// Input: edges = [[1,2],[2,3],[3,4],[1,4],[1,5]]
// Output: [1,4]
#include<bits/stdc++.h>
using namespace std;
class DSU {
private:
vector<int> parent;
vector<int> rank;
public:
DSU(int n) {
parent = vector<int>(n + 1);
rank = vector<int>(n + 1);
for(int i = 1; i <= n; i++) {
parent[i] = i;
rank[i] = 0;
}
}
int find(int x) {
if(x == parent[x]) return x;
parent[x] = find(parent[x]);
return parent[x];
}
bool _union(int x, int y) {
int parentX = find(x);
int parentY = find(y);
if(parentX == parentY) return false;
if(rank[parentX] < rank[parentY]) parent[parentX] = parentY;
else if(rank[parentX] > rank[parentY]) parent[parentY] = parentX;
else {
parent[parentY] = parentX;
rank[parentX]++;
}
return true;
}
};
class Solution {
public:
vector<int> findRedundantConnection(vector<vector<int>>& edges) {
int n = edges.size();
DSU dsu(n);
for(int i = 0; i < n; i++) {
int node1 = edges[i][0];
int node2 = edges[i][1];
if(!dsu._union(node1, node2)) {
return {node1, node2};
}
}
return {};
}
};
// Time Complexity : O(n * a(n)) [where n is the number of edges / nodes]
// a(n) is Inverse Ackermann function and it can be approximated to O(1)
// Space Complexity : O(n)