-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPrecipitation_analisys.m
476 lines (376 loc) · 14.8 KB
/
Precipitation_analisys.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Developed by Débora Rodrigues
% LAPMAR (UFPA) and MARETEC (IST)
% Date: 12/04/2023
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all; close all; clc
%% Load Observational
projectdir1 = 'E:\METEOROLOGIA\MERRA\NewAnalisys_INMETdata\Precip_INMET';% observational data folder location
files_ana=dir([projectdir1 '\*.txt']);
name = [];
for k=1:length(files_ana)
filename_ANA =[projectdir1 '\' files_ana(k).name];
ana{k}= load (filename_ANA);
name {k}= files_ana(k).name;
end
name= name';
%% Load Model
projectdir1 = 'E:\METEOROLOGIA\MERRA\NewAnalisys_INMETdata\Precip_NC';% model data folder location
files=dir([projectdir1 '\*.txt']);
for k=1:length(files)
filename =[projectdir1 '\' files(k).name];
merra{k}= load ([filename]);
end
%% Data trateament
for k = 1:32
%% First I am checking if the dataset follows the rules.
% Does start and end at the right times? If yes, analize.
% Real Results (hourly results)
ini = find(ana{k}==2010,1);
%fin = find(ana{k}==2022,1);
a = ana{k} (ini:end,1:5);
% you can use fin here instead of end
% example: a = ana{k} (ini:fin-1,2);
first = datetime(2010,01,01,0,0,0);
last = datetime(2021,12,31,23,59,59);
x = (first:hours(1):last)';
% Transforme to timetable to use Retime function
P1 = array2table(a,'VariableNames',{'Year','Month','Day','Hour','Rainfall'});
P = table2timetable(P1,'RowTimes',x);
%% Transform to daily results
p= retime(P,'daily',@sum);%'sum'
p= timetable2table(p);
% precipitation daily results
a = table2array(p(:,6));
%% Removing higher values
b= max(a);
c = nanmean(a);
a(a > 1.000e+03) = b;
clear ini fin x
%Model results (daily results)
p = merra{k}(:);
%% Start the analyses
% Following WMO guidelines for climate data
dt = (first:hours(24):last)';
%% Filter "bad" data
if size(a)== size(p)
day = [dt.Day];
month = [dt.Month];
year= [dt.Year];
tP= [year month day a p];
tP = array2table(tP);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Based on:
%https://www.mathworks.com/matlabcentral/answers/1793770-extract-all-data-for-the-june-months-over-the-years-from-a-timetable#answer_1040835
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tP.Properties.VariableNames={'Year','Month','Day','Rainfall','Model'}; % make meaningful variable name for data
tG=groupsummary(tP,{'Month','Year'},"all","Rainfall"); % and do the work..
tPnew = table2array(tP);
%% Start removing months with >= 11 missing days
tJan=tG(tG.Month==1,:);
var = tJan(1:12,["Year","nummissing_Rainfall"])
if tJan.nummissing_Rainfall >=0 %simple value to force to enter in the loop
% find for which year January has missing days
idx_ano = find(var.nummissing_Rainfall >=11);% find the index
var = table2array(var); %tranform to table
%If all you want to know is the value of a certain part of the matrix just call the index.
% find the exact year:
value_ano= var(idx_ano);
s= size(value_ano,1); %know the size of the value_ano matrix
value= num2cell(value_ano); %transform to cell to run in loop
for i = 1:s
ano1{i}= find(tPnew(:,2)==1 & tPnew == value{i}); %find the indices for month and year
tPnew(ano1{i},:) = [];%remove values for ano1 positions in the tPnew matrix
end
end
%repeat for the other months
%%
tFev=tG(tG.Month==2,:);
var = tFev(1:12,["Year","nummissing_Rainfall"])
if var.nummissing_Rainfall >=0
idx_ano = find(var.nummissing_Rainfall >=11);
var = table2array(var);
value_ano= var(idx_ano);
s= size(value_ano,1);
value= num2cell(value_ano);
for i = 1:s
ano1{i}= find(tPnew(:,2)==2 & tPnew == value{i});
tPnew(ano1{i},:) = [];
end
clear ano1
end
%%
tMar=tG(tG.Month==3,:);
var = tMar(1:12,["Year","nummissing_Rainfall"])
if var.nummissing_Rainfall >=0
idx_ano = find(var.nummissing_Rainfall >=11);
var = table2array(var);
value_ano= var(idx_ano);
s= size(value_ano,1)
value= num2cell(value_ano)
for i = 1:s
ano1{i}= find(tPnew(:,2)==3 & tPnew == value{i});
tPnew(ano1{i},:) = [];
end
clear ano1
end
%%
tApr=tG(tG.Month==4,:);
var = tApr(1:12,["Year","nummissing_Rainfall"])
if var.nummissing_Rainfall >=0
idx_ano = find(var.nummissing_Rainfall >=11);
var = table2array(var);
value_ano= var(idx_ano);
s= size(value_ano,1);
value= num2cell(value_ano);
for i = 1:s
ano1{i}= find(tPnew(:,2)==4 & tPnew == value{i});
tPnew(ano1{i},:) = [];
end
clear ano1
end
%%
tMay=tG(tG.Month==5,:);
var = tMay(1:12,["Year","nummissing_Rainfall"])
if var.nummissing_Rainfall >=0
idx_ano = find(var.nummissing_Rainfall >=11);
var = table2array(var);
value_ano= var(idx_ano);
s= size(value_ano,1)
value= num2cell(value_ano)
for i = 1:s
ano1{i}= find(tPnew(:,2)==5 & tPnew == value{i});
tPnew(ano1{i},:) = [];
end
clear ano1
end
%%
tJun=tG(tG.Month==6,:);
var = tJun(1:12,["Year","nummissing_Rainfall"])
if var.nummissing_Rainfall >=0
idx_ano = find(var.nummissing_Rainfall >=11);
var = table2array(var);
value_ano= var(idx_ano);
s= size(value_ano,1);
value= num2cell(value_ano);
for i = 1:s
ano1{i}= find(tPnew(:,2)==6 & tPnew == value{i});
tPnew(ano1{i},:) = [];
end
end
%%
tJul=tG(tG.Month==7,:);
var = tJul(1:12,["Year","nummissing_Rainfall"])
if var.nummissing_Rainfall >=0
idx_ano = find(var.nummissing_Rainfall >=11);
var = table2array(var);
value_ano= var(idx_ano);
s= size(value_ano,1)
value= num2cell(value_ano)
for i = 1:s
ano1{i}= find(tPnew(:,2)==7 & tPnew == value{i});
tPnew(ano1{i},:) = [];
end
clear ano1
end
%%
tAug=tG(tG.Month==8,:);
var = tAug(1:12,["Year","nummissing_Rainfall"])
if var.nummissing_Rainfall >=0
idx_ano = find(var.nummissing_Rainfall >=11);
var = table2array(var);
value_ano= var(idx_ano);
s= size(value_ano,1);
value= num2cell(value_ano);
for i = 1:s
ano1{i}= find(tPnew(:,2)==8 & tPnew == value{i});
tPnew(ano1{i},:) = [];
end
clear ano1
end
%%
tSep=tG(tG.Month==9,:);
var = tSep(1:12,["Year","nummissing_Rainfall"])
if var.nummissing_Rainfall >=0
idx_ano = find(var.nummissing_Rainfall >=11);
var = table2array(var);
value_ano= var(idx_ano);
s= size(value_ano,1);
value= num2cell(value_ano);
for i = 1:s
ano1{i}= find(tPnew(:,2)==9 & tPnew == value{i});
tPnew(ano1{i},:) = [];
end
clear ano1
end
%%
tOct=tG(tG.Month==10,:);
var = tOct(1:12,["Year","nummissing_Rainfall"])
if var.nummissing_Rainfall >=0
idx_ano = find(var.nummissing_Rainfall >=11);
var = table2array(var);
value_ano= var(idx_ano);
s= size(value_ano,1);
value= num2cell(value_ano)
for i = 1:s
ano1{i}= find(tPnew(:,2)==10 & tPnew == value{i})
tPnew(ano1{i},:) = [];
end
end
%%
tNov=tG(tG.Month==11,:);
var = tNov(1:12,["Year","nummissing_Rainfall"])
if var.nummissing_Rainfall >=0
idx_ano = find(var.nummissing_Rainfall >=11);
var = table2array(var);
value_ano= var(idx_ano);
s= size(value_ano,1);
value= num2cell(value_ano);
for i = 1:s
ano1{i}= find(tPnew(:,2)==11 & tPnew == value{i});
tPnew(ano1{i},:) = [];
end
clear ano1
end
%%
tDec=tG(tG.Month==12,:);
var = tDec(1:12,["Year","nummissing_Rainfall"])
if var.nummissing_Rainfall >=0
idx_ano = find(var.nummissing_Rainfall >=11);
var = table2array(var);
value_ano= var(idx_ano);
s= size(value_ano,1);
value= num2cell(value_ano);
for i = 1:s
ano1{i}= find(tPnew(:,2)==12 & tPnew == value{1});
%%
tPnew(ano1{i},:) = [];
end
end
%% Finished to remove months with more than 11 days missing data
clear value var tJan tFev tMar tApr tMay tJun tJul tAug tSep tOct tNov tDec ano1 s value...
value_ano idx_ano i
%% Joining Matrix
%create a new time vector
year = tPnew(:,1);
month = tPnew(:,2);
day = tPnew(:,3);
dates = datenum([year,month,day]);
%join the matrices
m= [dates tPnew(:,4:5)];
%% Percentage of NaN in the matrix
% you can use this at the begging or here or not use at all.
T = sum(isnan(m(:)));
T_Pct = 100*T/numel(m);
%% use regexp to find sequences of consecutive NaNs of length at least 5:
% I kept this block but i am basically just removing the other nans
[start_idx,end_idx] = regexp(char('0'+isnan(m (:,3)).'),'1{5,}','start','end');
to_remove = arrayfun(@(s,e)colon(s,e),start_idx,end_idx,'UniformOutput',false);
to_remove = [to_remove{:}];
m(to_remove,:) = []; %remove consecutive NaNs.
m = rmmissing(m);% remove consecutive NaNs.
clear to_remove start_idx end_idx year month day first last dt c b
%% Convert to timetable again
% Here we convert again to use retime for month, annual and climate
% normal
days= m(:,1);
days = datetime(days,'ConvertFrom','datenum');
P = array2table(m,'VariableNames',{'time','ESTACAO','RSP'});
P= table2timetable(P,'RowTimes',days);
%% Daily
estd= m(:,2);
modd= m(:,3);
% Errors
RMSE = rmse(estd,modd);
N_S= NSE(estd,modd);
r = corr(estd,modd);
BIAS = sum(estd-modd)/sum(estd)*100;
% wrong pbias:
%B = mean(estd) - mean(modd)/sum(estd)*100
%b = bias_skill(estd,modd)/sum(estd)*100
%R2
lm = fitlm(estd,modd);
c= saveobj (lm);
rsq=c.Rsquared.Ordinary;
Derror{k}= [RMSE N_S r rsq BIAS T_Pct];
%% Montlhy
Pest= retime(P(:,2),'monthly', 'sum');%'sum'
Psat = retime(P(:,3),'monthly','sum');
Pm= [Pest Psat];
%Monthly errors
x= timetable2table(Pm);
tx= x(:,1); x= table2array(x(:,2:3));
x = rmmissing(x);
estm=x(:,1); modm=x(:,2);
% Errors
RMSE = rmse(estm,modm);
N_S= NSE(estm,modm);
r = corr(estm,modm);
BIAS = sum(estm-modm)/sum(estm)*100;
%R2
lm = fitlm(estm,modm);
c= saveobj (lm);
rsq=c.Rsquared.Ordinary ;
Merror{k}= [RMSE N_S r rsq BIAS T_Pct];
%% Annually
PYest= retime(P(:,2),'yearly', 'sum');%'sum'
PYsat = retime(P(:,3),'yearly','sum');
PY= [PYest PYsat];
Pyear{k} = PY;
% Annual errors
Pyear_est= Pyear{k}(:,1);
Pyear_sat= Pyear{k}(:,2);
esty= timetable2table(Pyear_est); esty= table2array(esty (:,2));
mody= timetable2table(Pyear_sat); mody= table2array(mody(:,2));
% Errors
RMSE = rmse(esty,mody);
N_S= NSE(esty,mody);
r = corr(esty,mody);
BIAS = (sum(esty-mody)/sum(esty))*100;
%R2
lm = fitlm(esty,mody);
c= saveobj (lm);
rsq=c.Rsquared.Ordinary ;
Yerror {k}= [RMSE N_S r rsq BIAS T_Pct];
%% Normal Climate
ESTavg = groupsummary(Pm, 'Time', 'monthofyear','mean','ESTACAO');
SATavg = groupsummary(Pm, 'Time', 'monthofyear','mean','RSP');
est= ESTavg (:,3);
mod= SATavg (:,3);
time=ESTavg (:,1);
Pnc= [time est mod];
d= datenum(2010,1:12,1);
d=d';
estNC=table2array(est);
modNC=table2array(mod);
sumest= sum(estNC);
sumsat= sum(modNC);
% Normal Climate errors
RMSE = rmse(estNC,modNC);
N_S= NSE(estNC,modNC);
r = corr(estNC,modNC);
BIAS = (sum(estNC-modNC)/sum(estNC))*100;
%R2
lm = fitlm(estNC,modNC);
c= saveobj (lm);
rsq=c.Rsquared.Ordinary ;
NCerror {k}= [RMSE N_S r rsq BIAS T_Pct];
%% Clear variables we don't need anymore
clear tP tPnew T T_Pct tG est mod ESTavg SATavg dates d PYest PYsat...
Pyear_sat Pyear_est P1 Pest Psat
else
end
end
%% write each time scale errors into txt
Derror = Derror';
Derror = [name Derror];
writecell(Derror,'Derror.txt')
Merror = Merror';
Merror = [name Merror];
writecell(Merror,'Merror.txt')
Yerror= Yerror';
Yerror= [name Yerror ];
writecell(Yerror,'Yerror.txt')
NCerror= NCerror';
NCerror= [name NCerror];
writecell(NCerror,'NCerror.txt')