-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathtrain_ssl.py
501 lines (448 loc) · 23.5 KB
/
train_ssl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import logging
import numpy, random, time, json, copy
import numpy as np
import os.path as osp
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, Subset
from cords.utils.data.data_utils import WeightedSubset
from cords.utils.models import WideResNet, ShakeNet, CNN13, CNN
from cords.utils.data.datasets.SSL import utils as dataset_utils
from cords.selectionstrategies.helpers.ssl_lib.algs.builder import gen_ssl_alg
from cords.selectionstrategies.helpers.ssl_lib.algs import utils as alg_utils
from cords.utils.models import utils as model_utils
from cords.selectionstrategies.helpers.ssl_lib.consistency.builder import gen_consistency
from cords.utils.data.datasets.SSL import gen_dataset
from cords.selectionstrategies.helpers.ssl_lib.param_scheduler import scheduler
from cords.selectionstrategies.helpers.ssl_lib.misc.meter import Meter
from cords.utils.data.dataloader.SSL.adaptive import *
from cords.utils.config_utils import load_config_data
import time
import os
import sys
class TrainClassifier:
def __init__(self, config_file_data):
self.cfg = config_file_data
results_dir = osp.abspath(osp.expanduser(self.cfg.train_args.results_dir))
all_logs_dir = os.path.join(results_dir, self.cfg.setting,
self.cfg.dss_args.type,
self.cfg.dataset.name,
str(self.cfg.dss_args.fraction),
str(self.cfg.dss_args.select_every))
os.makedirs(all_logs_dir, exist_ok=True)
# setup logger
plain_formatter = logging.Formatter("[%(asctime)s] %(name)s %(levelname)s: %(message)s",
datefmt="%m/%d %H:%M:%S")
self.logger = logging.getLogger(__name__)
self.logger.setLevel(logging.INFO)
s_handler = logging.StreamHandler(stream=sys.stdout)
s_handler.setFormatter(plain_formatter)
s_handler.setLevel(logging.INFO)
self.logger.addHandler(s_handler)
f_handler = logging.FileHandler(os.path.join(all_logs_dir, self.cfg.dataset.name + ".log"))
f_handler.setFormatter(plain_formatter)
f_handler.setLevel(logging.DEBUG)
self.logger.addHandler(f_handler)
self.logger.propagate = False
self.logger.info(self.cfg)
"""
############################## Model Creation ##############################
"""
def gen_model(self, name, num_classes, img_size):
scale = int(np.ceil(np.log2(img_size)))
if name == "wrn":
return WideResNet(num_classes, 32, scale, 4)
elif name == "shake":
return ShakeNet(num_classes, 32, scale, 4)
elif name == "cnn13":
return CNN13(num_classes, 32)
elif name == 'cnn':
return CNN(num_classes)
else:
raise NotImplementedError
"""
############################## Model Evaluation ##############################
"""
@staticmethod
def evaluation(raw_model, eval_model, loader, device):
raw_model.eval()
eval_model.eval()
sum_raw_acc = sum_acc = sum_loss = 0
with torch.no_grad():
for (data, labels) in loader:
data, labels = data.to(device), labels.to(device)
preds = eval_model(data)
raw_preds = raw_model(data)
loss = F.cross_entropy(preds, labels)
sum_loss += loss.item()
acc = (preds.max(1)[1] == labels).float().mean()
raw_acc = (raw_preds.max(1)[1] == labels).float().mean()
sum_acc += acc.item()
sum_raw_acc += raw_acc.item()
mean_raw_acc = sum_raw_acc / len(loader)
mean_acc = sum_acc / len(loader)
mean_loss = sum_loss / len(loader)
raw_model.train()
eval_model.train()
return mean_raw_acc, mean_acc, mean_loss
"""
############################## Model Parameters Update ##############################
"""
def param_update(self,
cur_iteration,
model,
teacher_model,
optimizer,
ssl_alg,
consistency,
labeled_data,
ul_weak_data,
ul_strong_data,
labels,
average_model,
weights=None,
ood=False
):
# if ood:
# model.update_batch_stats(False)
start_time = time.time()
all_data = torch.cat([labeled_data, ul_weak_data, ul_strong_data], 0)
forward_func = model.forward
stu_logits = forward_func(all_data)
labeled_preds = stu_logits[:labeled_data.shape[0]]
stu_unlabeled_weak_logits, stu_unlabeled_strong_logits = torch.chunk(stu_logits[labels.shape[0]:], 2, dim=0)
if self.cfg.optimizer.tsa:
none_reduced_loss = F.cross_entropy(labeled_preds, labels, reduction="none")
L_supervised = alg_utils.anneal_loss(
labeled_preds, labels, none_reduced_loss, cur_iteration + 1,
self.cfg.train_args.iteration, labeled_preds.shape[1], self.cfg.optimizer.tsa_schedule)
else:
L_supervised = F.cross_entropy(labeled_preds, labels)
if self.cfg.ssl_args.coef > 0:
# get target values
if teacher_model is not None: # get target values from teacher model
t_forward_func = teacher_model.forward
tea_logits = t_forward_func(all_data)
tea_unlabeled_weak_logits, _ = torch.chunk(tea_logits[labels.shape[0]:], 2, dim=0)
else:
t_forward_func = forward_func
tea_unlabeled_weak_logits = stu_unlabeled_weak_logits
# calc consistency loss
model.update_batch_stats(False)
y, targets, mask = ssl_alg(
stu_preds=stu_unlabeled_strong_logits,
tea_logits=tea_unlabeled_weak_logits.detach(),
w_data=ul_strong_data,
subset=False,
stu_forward=forward_func,
tea_forward=t_forward_func
)
model.update_batch_stats(True)
# if not ood:
# model.update_batch_stats(True)
if weights is None:
L_consistency = consistency(y, targets, mask, weak_prediction=tea_unlabeled_weak_logits.softmax(1))
else:
L_consistency = consistency(y, targets, mask * weights,
weak_prediction=tea_unlabeled_weak_logits.softmax(1))
else:
L_consistency = torch.zeros_like(L_supervised)
mask = None
# calc total loss
coef = scheduler.exp_warmup(self.cfg.ssl_args.coef, int(self.cfg.scheduler.warmup_iter), cur_iteration + 1)
loss = L_supervised + coef * L_consistency
if self.cfg.ssl_args.em > 0:
loss -= self.cfg.ssl_args.em * \
(stu_unlabeled_weak_logits.softmax(1) * F.log_softmax(stu_unlabeled_weak_logits, 1)).sum(1).mean()
# update parameters
cur_lr = optimizer.param_groups[0]["lr"]
optimizer.zero_grad()
loss.backward()
if self.cfg.optimizer.weight_decay > 0:
decay_coeff = self.cfg.optimizer.weight_decay * cur_lr
model_utils.apply_weight_decay(model.modules(), decay_coeff)
optimizer.step()
# update teacher parameters by exponential moving average
if self.cfg.ssl_args.ema_teacher:
model_utils.ema_update(
teacher_model, model, self.cfg.ssl_args.ema_teacher_factor,
self.cfg.optimizer.weight_decay * cur_lr if self.cfg.ssl_args.ema_apply_wd else None,
cur_iteration if self.cfg.ssl_args.ema_teacher_warmup else None)
# update evaluation model's parameters by exponential moving average
if self.cfg.ssl_eval_args.weight_average:
model_utils.ema_update(
average_model, model, self.cfg.ssl_eval_args.wa_ema_factor,
self.cfg.optimizer.weight_decay * cur_lr if self.cfg.ssl_eval_args.wa_apply_wd else None)
# calculate accuracy for labeled data
acc = (labeled_preds.max(1)[1] == labels).float().mean()
return {
"acc": acc,
"loss": loss.item(),
"sup loss": L_supervised.item(),
"ssl loss": L_consistency.item(),
"mask": mask.float().mean().item() if mask is not None else 1,
"coef": coef,
"sec/iter": (time.time() - start_time)
}
"""
############################## Calculate selected ID points percentage ##############################
"""
def get_ul_ood_ratio(self, ul_dataset):
actual_lbls = ul_dataset.dataset.dataset['labels'][ul_dataset.indices]
bincnt = numpy.bincount(actual_lbls, minlength=10)
self.logger.info("Ratio of ID points selected: {0:f}".format((bincnt[:6].sum() / bincnt.sum()).item()))
"""
############################## Calculate selected ID points percentage ##############################
"""
def get_ul_classimb_ratio(self, ul_dataset):
actual_lbls = ul_dataset.dataset.dataset['labels'][ul_dataset.indices]
bincnt = numpy.bincount(actual_lbls, minlength=10)
self.logger.info("Ratio of points selected from under-represented classes: {0:f}".format(
(bincnt[:5].sum() / bincnt.sum()).item()))
"""
############################## Main File ##############################
"""
def train(self):
logger = self.logger
# set seed
torch.manual_seed(self.cfg.train_args.seed)
numpy.random.seed(self.cfg.train_args.seed)
random.seed(self.cfg.train_args.seed)
device = self.cfg.train_args.device
# build data loader
logger.info("load dataset")
lt_data, ult_data, test_data, num_classes, img_size = gen_dataset(self.cfg.dataset.root, self.cfg.dataset.name,
False, self.cfg, logger)
# set consistency type
consistency = gen_consistency(self.cfg.ssl_args.consis, self.cfg)
consistency_nored = gen_consistency(self.cfg.ssl_args.consis + '_red', self.cfg)
# set ssl algorithm
ssl_alg = gen_ssl_alg(self.cfg.ssl_args.alg, self.cfg)
# build student model
model = self.gen_model(self.cfg.model.architecture, num_classes, img_size).to(device)
# build teacher model
if self.cfg.ssl_args.ema_teacher:
teacher_model = self.gen_model(self.cfg.model.architecture, num_classes, img_size).to(device)
teacher_model.load_state_dict(model.state_dict())
else:
teacher_model = None
# for evaluation
if self.cfg.ssl_eval_args.weight_average:
average_model = self.gen_model(self.cfg.model.architecture, num_classes, img_size).to(device)
average_model.load_state_dict(model.state_dict())
else:
average_model = None
"""
Subset selection arguments
"""
if self.cfg.dss_args.type == 'Full':
max_iteration = self.cfg.train_args.iteration
else:
if self.cfg.train_args.max_iter != -1:
max_iteration = self.cfg.train_args.max_iter
else:
max_iteration = int(self.cfg.train_args.iteration * self.cfg.dss_args.fraction)
# Create Data Loaders
ult_seq_loader = DataLoader(ult_data, batch_size=self.cfg.dataloader.ul_batch_size,
shuffle=False, pin_memory=True)
lt_seq_loader = DataLoader(lt_data, batch_size=self.cfg.dataloader.l_batch_size,
shuffle=False, pin_memory=True)
test_loader = DataLoader(
test_data,
1,
shuffle=False,
drop_last=False,
num_workers=self.cfg.dataloader.num_workers
)
"""
############################## Custom Dataloader Creation ##############################
"""
if self.cfg.dss_args.type in ['GradMatch', 'GradMatchPB', 'GradMatch-Warm', 'GradMatchPB-Warm']:
"""
############################## GradMatch Dataloader Additional Arguments ##############################
"""
self.cfg.dss_args.model = model
self.cfg.dss_args.tea_model = teacher_model
self.cfg.dss_args.ssl_alg = ssl_alg
self.cfg.dss_args.loss = consistency_nored
self.cfg.dss_args.num_classes = num_classes
self.cfg.dss_args.num_iters = self.cfg.train_args.iteration
self.cfg.dss_args.eta = self.cfg.optimizer.lr
self.cfg.dss_args.device = self.cfg.train_args.device
ult_loader = GradMatchDataLoader(ult_seq_loader, lt_seq_loader, self.cfg.dss_args, logger=logger,
batch_size=self.cfg.dataloader.ul_batch_size,
pin_memory=self.cfg.dataloader.pin_memory,
num_workers=self.cfg.dataloader.num_workers)
elif self.cfg.dss_args.type in ['RETRIEVE', 'RETRIEVE-Warm', 'RETRIEVEPB', 'RETRIEVEPB-Warm']:
"""
############################## RETRIEVE Dataloader Additional Arguments ##############################
"""
self.cfg.dss_args.model = model
self.cfg.dss_args.tea_model = teacher_model
self.cfg.dss_args.ssl_alg = ssl_alg
self.cfg.dss_args.loss = consistency_nored
self.cfg.dss_args.num_classes = num_classes
self.cfg.dss_args.num_iters = max_iteration
self.cfg.dss_args.eta = self.cfg.optimizer.lr
self.cfg.dss_args.device = self.cfg.train_args.device
ult_loader = RETRIEVEDataLoader(ult_seq_loader, lt_seq_loader, self.cfg.dss_args, logger=logger,
batch_size=self.cfg.dataloader.ul_batch_size,
pin_memory=self.cfg.dataloader.pin_memory,
num_workers=self.cfg.dataloader.num_workers)
elif self.cfg.dss_args.type in ['CRAIG', 'CRAIG-Warm', 'CRAIGPB', 'CRAIGPB-Warm']:
"""
############################## CRAIG Dataloader Additional Arguments ##############################
"""
self.cfg.dss_args.model = model
self.cfg.dss_args.tea_model = teacher_model
self.cfg.dss_args.ssl_alg = ssl_alg
self.cfg.dss_args.loss = consistency_nored
self.cfg.dss_args.num_classes = num_classes
self.cfg.dss_args.num_iters = max_iteration
self.cfg.dss_args.device = self.cfg.train_args.device
ult_loader = CRAIGDataLoader(ult_seq_loader, lt_seq_loader, self.cfg.dss_args, logger=logger,
batch_size=self.cfg.dataloader.ul_batch_size,
pin_memory=self.cfg.dataloader.pin_memory,
num_workers=self.cfg.dataloader.num_workers)
elif self.cfg.dss_args.type in ['Random', 'Random-Warm']:
"""
############################## Random Dataloader Additional Arguments ##############################
"""
self.cfg.dss_args.device = self.cfg.train_args.device
self.cfg.dss_args.num_classes = num_classes
self.cfg.dss_args.num_iters = max_iteration
self.cfg.dss_args.device = self.cfg.train_args.device
ult_loader = RandomDataLoader(ult_seq_loader, self.cfg.dss_args, logger=logger,
batch_size=self.cfg.dataloader.ul_batch_size,
pin_memory=self.cfg.dataloader.pin_memory,
num_workers=self.cfg.dataloader.num_workers)
elif self.cfg.dss_args.type == ['OLRandom', 'OLRandom-Warm']:
"""
############################## OLRandom Dataloader Additional Arguments ##############################
"""
self.cfg.dss_args.device = self.cfg.train_args.device
self.cfg.dss_args.num_classes = num_classes
self.cfg.dss_args.num_iters = max_iteration
self.cfg.dss_args.device = self.cfg.train_args.device
ult_loader = OLRandomDataLoader(ult_seq_loader, self.cfg.dss_args, logger=logger,
batch_size=self.cfg.dataloader.ul_batch_size,
pin_memory=self.cfg.dataloader.pin_memory,
num_workers=self.cfg.dataloader.num_workers)
elif self.cfg.dss_args.type == 'Full':
"""
############################## Full Dataloader Additional Arguments ##############################
"""
wt_trainset = WeightedSubset(ult_data, list(range(len(ult_data))), [1] * len(ult_data))
ult_loader = torch.utils.data.DataLoader(wt_trainset,
batch_size=self.cfg.dataloader.ul_batch_size,
pin_memory=self.cfg.dataloader.pin_memory,
num_workers=self.cfg.dataloader.num_workers)
model.train()
logger.info(model)
if self.cfg.optimizer.type == "sgd":
optimizer = optim.SGD(
model.parameters(), self.cfg.optimizer.lr, self.cfg.optimizer.momentum,
weight_decay=self.cfg.optimizer.weight_decay, nesterov=self.cfg.optimizer.nesterov)
elif self.cfg.optimizer.type == "adam":
optimizer = optim.Adam(
model.parameters(), self.cfg.optimizer.lr, (self.cfg.optimizer.momentum, 0.999),
weight_decay=self.cfg.optimizer.weight_decay)
else:
raise NotImplementedError
# set lr scheduler
if self.cfg.scheduler.lr_decay == "cos":
if self.cfg.dss_args.type == 'Full':
lr_scheduler = scheduler.CosineAnnealingLR(optimizer, max_iteration)
else:
lr_scheduler = scheduler.CosineAnnealingLR(optimizer,
self.cfg.train_args.iteration * self.cfg.dss_args.fraction)
elif self.cfg.scheduler.lr_decay == "step":
# TODO: fixed milestones
lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [400000, ], self.cfg.scheduler.lr_decay_rate)
else:
raise NotImplementedError
# init meter
metric_meter = Meter()
test_acc_list = []
best_acc_list = []
curr_best_acc = 0
raw_acc_list = []
logger.info("training")
if self.cfg.dataset.feature == 'ood':
self.get_ul_ood_ratio(ult_loader.dataset)
elif self.cfg.dataset.feature == 'classimb':
self.get_ul_classimb_ratio(ult_loader.dataset)
iter_count = 1
subset_selection_time = 0
training_time = 0
while iter_count <= max_iteration:
lt_loader = DataLoader(
lt_data,
self.cfg.dataloader.l_batch_size,
sampler=dataset_utils.InfiniteSampler(len(lt_data), len(list(
ult_loader.batch_sampler)) * self.cfg.dataloader.l_batch_size),
num_workers=self.cfg.dataloader.num_workers
)
logger.debug("Data loader iteration count is: {0:d}".format(len(list(ult_loader.batch_sampler))))
for batch_idx, (l_data, ul_data) in enumerate(zip(lt_loader, ult_loader)):
batch_start_time = time.time()
if iter_count > max_iteration:
break
l_aug, labels = l_data
ul_w_aug, ul_s_aug, _, weights = ul_data
if self.cfg.dataset.feature in ['ood', 'classimb']:
ood = True
else:
ood = False
params = self.param_update(
iter_count, model, teacher_model, optimizer, ssl_alg,
consistency, l_aug.to(device), ul_w_aug.to(device),
ul_s_aug.to(device), labels.to(device),
average_model, weights=weights.to(device), ood=ood)
training_time += (time.time() - batch_start_time)
# moving average for reporting losses and accuracy
metric_meter.add(params, ignores=["coef"])
# display losses every cfg.disp iterations
if ((iter_count + 1) % self.cfg.train_args.disp) == 0:
state = metric_meter.state(
header=f'[{iter_count + 1}/{max_iteration}]',
footer=f'ssl coef {params["coef"]:.4g} | lr {optimizer.param_groups[0]["lr"]:.4g}'
)
logger.info(state)
lr_scheduler.step()
if ((iter_count + 1) % self.cfg.ckpt.checkpoint) == 0 or (iter_count + 1) == max_iteration:
with torch.no_grad():
if self.cfg.ssl_eval_args.weight_average:
eval_model = average_model
else:
eval_model = model
logger.info("test")
mean_raw_acc, mean_test_acc, mean_test_loss = self.evaluation(model, eval_model, test_loader,
device)
logger.info("test loss %f | test acc. %f | raw acc. %f", mean_test_loss, mean_test_acc,
mean_raw_acc)
test_acc_list.append(mean_test_acc)
if mean_test_acc > curr_best_acc:
curr_best_acc = mean_test_acc
best_acc_list.append(curr_best_acc)
raw_acc_list.append(mean_raw_acc)
torch.save(model.state_dict(), os.path.join(self.cfg.train_args.results_dir, "model_checkpoint.pth"))
torch.save(optimizer.state_dict(),
os.path.join(self.cfg.train_args.results_dir, "optimizer_checkpoint.pth"))
iter_count += 1
numpy.save(os.path.join(self.cfg.train_args.results_dir, "evaluation_results"), test_acc_list)
numpy.save(os.path.join(self.cfg.train_args.results_dir, "raw_results"), raw_acc_list)
logger.info("Total Time taken: %f", training_time + subset_selection_time)
logger.info("Subset Selection Time: %f", subset_selection_time)
accuracies = {}
for i in [1, 10, 20, 50]:
logger.info("mean test acc. over last %d checkpoints: %f", i, numpy.median(test_acc_list[-i:]))
logger.info("mean best acc. over last %d checkpoints: %f", i, numpy.median(best_acc_list[-i:]))
logger.info("mean test acc. for raw model over last %d checkpoints: %f", i, numpy.median(raw_acc_list[-i:]))
accuracies[f"last{i}"] = numpy.median(test_acc_list[-i:])
accuracies[f"best{i}"] = numpy.median(best_acc_list[-i:])
with open(os.path.join(self.cfg.train_args.results_dir, "results.json"), "w") as f:
json.dump(accuracies, f, sort_keys=True)
if __name__ == "__main__":
torch.multiprocessing.freeze_support()