-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.py
217 lines (186 loc) · 8.38 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import numpy as np
from mobility import RandomWaypointModel
from lifi import LifiAccessPoint
from wifi import WiFiAccessPoint
from user import User
import os
import math
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
# Function to calculate H(W), H(L1), H(L2), H(L3), and H(L4) for a given point
def calculate_snr(x, y):
fc = 2.4e9
user = User(user_id='U', position=(x, y, user_height))
H_W = wifi_ap.calculate_channel_gain(user, fc)
H_L1 = lifi_aps[0].get_channel_gain(x, y)
H_L2 = lifi_aps[1].get_channel_gain(x, y)
H_L3 = lifi_aps[2].get_channel_gain(x, y)
H_L4 = lifi_aps[3].get_channel_gain(x, y)
snr_W = wifi_ap.calculate_snr(H_W)
snr_L1 = lifi_aps[0].signal_to_noise_ratio(x, y, otherLifiAPs=lifi_aps[1:])
snr_L2 = lifi_aps[1].signal_to_noise_ratio(x, y, otherLifiAPs=lifi_aps[:1] + lifi_aps[2:])
snr_L3 = lifi_aps[2].signal_to_noise_ratio(x, y, otherLifiAPs=lifi_aps[:2] + lifi_aps[3:])
snr_L4 = lifi_aps[3].signal_to_noise_ratio(x, y, otherLifiAPs=lifi_aps[:3])
return np.array([H_W, H_L1, H_L2, H_L3, H_L4]), np.array([snr_W, snr_L1, snr_L2, snr_L3, snr_L4])
def my_ceil(a, precision=0):
return np.round(a + 0.5 * 10**(-precision), precision)
def my_floor(a, precision=0):
return np.round(a - 0.5 * 10**(-precision), precision)
def bilinear_interpolation(x, y, snr_values):
# Check if the user's position is within the grid
if (x, y) in snr_values:
return snr_values[(x, y)]
else:
# Find the four nearest grid points
x1, x2 = my_floor(x,1), my_ceil(x,1)
y1, y2 = my_floor(y,1), my_ceil(y,1)
print(f"({x1}, {y1}), ({x1}, {y2}), ({x2}, {y1}), ({x2}, {y2})")
# Get the snr at the four nearest grid points
values_at_x1y1 = snr_values.get((x1, y1), {'snr_W': 0, 'snr_L1': 0, 'snr_L2': 0, 'snr_L3': 0, 'snr_L4': 0})
values_at_x1y2 = snr_values.get((x1, y2), {'snr_W': 0, 'snr_L1': 0, 'snr_L2': 0, 'snr_L3': 0, 'snr_L4': 0})
values_at_x2y1 = snr_values.get((x2, y1), {'snr_W': 0, 'snr_L1': 0, 'snr_L2': 0, 'snr_L3': 0, 'snr_L4': 0})
values_at_x2y2 = snr_values.get((x2, y2), {'snr_W': 0, 'snr_L1': 0, 'snr_L2': 0, 'snr_L3': 0, 'snr_L4': 0})
# Extract individual components for interpolation
snrW_1, snrL1_1, snrL2_1, snrL3_1, snrL4_1 = values_at_x1y1.values()
snrW_2, snrL1_2, snrL2_2, snrL3_2, snrL4_2 = values_at_x1y2.values()
snrW_3, snrL1_3, snrL2_3, snrL3_3, snrL4_3 = values_at_x2y1.values()
snrW_4, snrL1_4, snrL2_4, snrL3_4, snrL4_4 = values_at_x2y2.values()
# Bilinear interpolation for snr_W
snr_W = (1 / ((x2 - x1) * (y2 - y1))) * (
snrW_1 * (x2 - x) * (y2 - y) +
snrW_2 * (x2 - x) * (y - y1) +
snrW_3 * (x - x1) * (y2 - y) +
snrW_4 * (x - x1) * (y - y1)
)
# Bilinear interpolation for snr_L1
snr_L1 = (1 / ((x2 - x1) * (y2 - y1))) * (
snrL1_1 * (x2 - x) * (y2 - y) +
snrL1_2 * (x2 - x) * (y - y1) +
snrL1_3 * (x - x1) * (y2 - y) +
snrL1_4 * (x - x1) * (y - y1)
)
# Implement bilinear interpolation for other H values similarly
# Bilinear interpolation for snr_L2
snr_L2 = (1 / ((x2 - x1) * (y2 - y1))) * (
snrL2_1 * (x2 - x) * (y2 - y) +
snrL2_2 * (x2 - x) * (y - y1) +
snrL2_3 * (x - x1) * (y2 - y) +
snrL2_4 * (x - x1) * (y - y1)
)
# Bilinear interpolation for snr_L3
snr_L3 = (1 / ((x2 - x1) * (y2 - y1))) * (
snrL3_1 * (x2 - x) * (y2 - y) +
snrL3_2 * (x2 - x) * (y - y1) +
snrL3_3 * (x - x1) * (y2 - y) +
snrL3_4 * (x - x1) * (y - y1)
)
# Bilinear interpolation for snr_L4
snr_L4 = (1 / ((x2 - x1) * (y2 - y1))) * (
snrL4_1 * (x2 - x) * (y2 - y) +
snrL4_2 * (x2 - x) * (y - y1) +
snrL4_3 * (x - x1) * (y2 - y) +
snrL4_4 * (x - x1) * (y - y1)
)
return {
'snr_W': snr_W,
'snr_L1': snr_L1,
'snr_L2': snr_L2,
'snr_L3': snr_L3,
'snr_L4': snr_L4
}
# Room dimensions
room_width = 5.0
room_height = 5.0
# User position
user_height = 0.8
user_x, user_y = 0, 0
# Divide the floor into 0.1x0.1m squares
grid_size = 0.1
x_grid = [round(i * grid_size, 1) for i in range(int(room_width / grid_size) + 1)]
y_grid = [round(i * grid_size, 1) for i in range(int(room_height / grid_size) + 1)]
print(f"Number of squares in x-direction: {len(x_grid)}")
print(f"Number of squares in y-direction: {len(y_grid)}")
print(f"Total number of squares: {len(x_grid) * len(y_grid)}")
# WiFi access point parameters
wifi_ap = WiFiAccessPoint(ap_id='W', ap_position=(2.5, 2.5, 5), transmit_power=0.1, noise_psd=10**((-174 - 30)/10), bandwidth=20e6, sigma=10)
# LiFi access points parameters
lifi_aps = [
LifiAccessPoint(x=1.25, y=1.25, h=user_height),
LifiAccessPoint(x=1.25, y=3.75, h=user_height),
LifiAccessPoint(x=3.75, y=3.75, h=user_height),
LifiAccessPoint(x=3.75, y=1.25, h=user_height)
]
# Create a dictionary to store snr values for each square
snr_values = {}
# Initialize H_values_matrix and snr_values_matrix as a 3D NumPy array filled with zeros
snr_values_matrix = np.zeros((len(x_grid), len(y_grid), 5))
H_values_matrix = np.zeros((len(x_grid), len(y_grid), 5))
# Calculate snr values for each square on the floor
for i, x in enumerate(x_grid):
for j, y in enumerate(y_grid):
channel_gains_ret, snr_values_ret = calculate_snr(x, y)
snr_values[(x, y)] = {
'snr_W': snr_values_ret[0],
'snr_L1': snr_values_ret[1],
'snr_L2': snr_values_ret[2],
'snr_L3': snr_values_ret[3],
'snr_L4': snr_values_ret[4]
}
H_values_matrix[i, j, :] = channel_gains_ret
snr_values_matrix[i, j, :] = snr_values_ret
# Convert snr_values_matrix to dB
snr_values_matrix_dB = 10 * np.log10(snr_values_matrix)
# Convert h_values_matrix to dB
H_values_matrix_dB = 10 * np.log10(H_values_matrix)
'''
Surface plot for Channel Gain and SNR
'''
def surface_plot(matrix, type, inDb, z_label, title):
os.makedirs(os.path.join(os.getcwd(), 'plots'), exist_ok=True)
# Create a surface plot for Channel_Gain for LiFi APs
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y = np.meshgrid(x_grid, y_grid)
ax.plot_surface(X, Y, matrix[:,:,1], label=f'{type}_L1', alpha=0.6, cmap=cm.coolwarm)
ax.plot_surface(X, Y, matrix[:,:,2], label=f'{type}_L2', alpha=0.6, cmap=cm.coolwarm)
ax.plot_surface(X, Y, matrix[:,:,3], label=f'{type}_L3', alpha=0.6, cmap=cm.coolwarm)
ax.plot_surface(X, Y, matrix[:,:,4], label=f'{type}_L4', alpha=0.6, cmap=cm.coolwarm)
ax.set_xlabel('X')
ax.set_ylabel('Y')
# ax.set_zlabel('Channel_Gain_H')
ax.set_title(z_label)
ax.set_title(f'{title} for LiFi APs')
title1 = title.replace(' ', '_').lower()
# cm.Blues, cm.hsv, cm.coolwarm, cm.gist_rainbow,
plt.savefig(os.path.join(os.getcwd(), f'plots\surface_plot_{title1}_lifi.png'))
plt.show()
# Create surface plot for Channel_Gain for WiFi AP
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y = np.meshgrid(x_grid, y_grid)
ax.plot_surface(X, Y, matrix[:,:,0], label=f'{type}_W', alpha=0.6)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_title(z_label)
ax.set_title(f'{title} for WiFi AP')
title1 = title.replace(' ', '_').lower()
plt.savefig(os.path.join(os.getcwd(), f'plots\surface_plot_{title1}_wifi.png'))
plt.show()
surface_plot(H_values_matrix, 'H', False, 'Channel_Gain_H', 'Channel Gain')
surface_plot(H_values_matrix_dB, 'H', True, 'Channel_Gain_H_in_dB', 'Channel Gain in dB')
surface_plot(snr_values_matrix, 'snr', False, 'SNR', 'SNR')
surface_plot(snr_values_matrix_dB, 'snr', True, 'SNR_in_dB', 'SNR in dB')
# with open('snr_values_L1_matrix.txt', 'w') as f:
# f.write(' ')
# for a in range(len(x_grid)):
# f.write(f'{x_grid[a]} ')
# f.write('\n')
# for a in range(len(snr_values_matrix)):
# f.write(f'{x_grid[a]} ')
# for b in range(len(snr_values_matrix[a])):
# if H_values_matrix[a][b][1] > 0:
# f.write(f' {1e3*H_values_matrix[a][b][1]:.3f} ')
# else:
# f.write(f'{1e3*H_values_matrix[a][b][1]:.3f} ')
# f.write('\n')