-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlifi.py
166 lines (145 loc) · 7.32 KB
/
lifi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import numpy as np
from typing import List
import json
class LifiAccessPoint:
def __init__(self, x, y, Φ_1by2=60, Apd=100*1e-4, ref_index=1.5, FOV=90, gf=1,
room_x=5, room_y=5, room_z=5, h=0.8, Rpd=0.53, pw=0.8, Popt=3, k=3, Nlifi=1e-21, Blifi=20*1e6):
# attribute for Half-intensity radiation angle (Φ1/2)
self.Φ_1by2 = Φ_1by2 * np.pi / 180
self.m = -np.log(2) / np.log(np.cos(np.radians(Φ_1by2)))
# Refractive ref_index of the medium
self.ref_index = ref_index
# FoV semi-angle of PD, Ψmax
self.FOV = FOV * np.pi / 180
# physical area of the PD, Apd
self.Apd = Apd
# gain of the optical filter, gf
self.gf = gf
# length of the room in the x-direction (horizontal) in meters.
self.room_x = room_x
# length of the room in the y-direction (vertical) in meters.
self.room_y = room_y
# height of the room in meters
self.room_z = room_z
# height of the user above the receiver plane
self.h = h
# position of the lifi access point in ceiling
self.lifi_position = np.array([x, y, room_z])
# Detector responsivity, Rpd
self.Rpd = Rpd
# Transmitted optical power per LiFi AP, Popt
self.Popt = Popt
# optical to electrical conversion coefficient, k
self.k = k
# PSD of noise in LiFi AP, NLiFi
self.Nlifi = Nlifi
# Bandwidth of LiFi AP, BLiFi
self.Blifi = Blifi
# Wall reflectivity, pw
self.pw = pw
# Number of points in the x and y directions
# self.Nx = int(room_x * 10)
# self.Ny = int(room_y * 10)
# self.x = np.linspace(0, room_x, self.Nx)
# self.y = np.linspace(0, room_y, self.Ny)
# self.XR, self.YR = np.meshgrid(self.x, self.y)
# print(self.XR)
# print(self.XR.shape)
import os
print(os.getcwd())
name = "./channel_gain_nlos_mids_"+str(int(self.lifi_position[0]*100)) +"_"+ str(int(self.lifi_position[1]*100))
with open(name+'.json') as json_file:
self.channel_gain_nlos_data = json.load(json_file)
# for i,j in self.channel_gain_nlos.items():
# self.channel_gain_nlos[i] = np.array(j)
def get_channel_gain(self, user_x, user_y):
# uncomment this line to include NLOS channel gain
return self.channel_gain_los(user_x, user_y) + self.channel_gain_nlos(user_x, user_y)
def channel_gain_los(self, user_x, user_y):
d = self.distance(user_x, user_y)
# both angles are equal due to symmetry
incidence = self.angle_incidence(user_x, user_y)
irradiance = incidence
gc = self.optical_gain(incidence)
channel_gain = ((self.m + 1) * self.Apd * (np.cos(irradiance)**self.m) * np.cos(incidence) * self.gf * gc) / (2 * np.pi * (d**2))
# print(incidence, irradiance, channel_gain, self.m, gc, self.Apd, self.gf)
return channel_gain
def custom_round(self,number):
rounded_number = round(number, 1)
# Set the second decimal place to 5
modified_number = rounded_number + 0.05
rounded_number = round(modified_number, 2)
return rounded_number if rounded_number <= 5 else rounded_number - 0.1
def channel_gain_nlos(self, user_x, user_y):
# boxes_per_meter = 10
# dl, dh = 1/boxes_per_meter, 1/boxes_per_meter
# height_coord = np.arange(self.h, self.room_z, dh)
# length_coord = np.arange(self.h, self.room_x, dl)
# user_position = np.array([user_x, user_y, self.h])
# integration = 0
# for height in height_coord:
# # print(f'{height:.3f} ')
# for length in length_coord:
# locations = [np.array([length, 0, height]), np.array([length, self.room_y, height]),
# np.array([0, length, height]), np.array([self.room_x, length, height])]
# for curr_location in locations:
# d_iw = np.linalg.norm(curr_location - self.lifi_position)
# d_wu = np.linalg.norm(user_position - curr_location)
# theta_iw = np.arccos((self.room_z - height) / d_iw)
# ϑ_iw = 90 - theta_iw
# phi_wu = np.arccos((height - self.h) / d_wu)
# ϑ_wu = 90 - phi_wu
# numerator = (self.m + 1) * self.Apd * self.pw * (np.cos(theta_iw)**self.m) * \
# self.gf * self.optical_gain(phi_wu) * np.cos(phi_wu) * np.cos(ϑ_iw) * np.cos(ϑ_wu)
# integration += (numerator * dl * dh) / (2 * (np.pi * d_iw * d_wu)**2)
# return integration
# Read files
# floor or ceil the value of user_x and user_y to _._0 or _._5
user_x = round(self.custom_round(user_x), 2)
user_y = round(self.custom_round(user_y), 2)
return self.channel_gain_nlos_data[str(tuple([user_x, user_y]))]
def signal_to_noise_ratio(self, user_x, user_y, otherLifiAPs:List=None):
summation_term = 0
# for lifi in otherLifiAPs:
# print(f'Lifi at {lifi.lifi_position} has gain', lifi.get_channel_gain(user_x, user_y))
# summation_term += (lifi.Rpd * lifi.get_channel_gain(user_x, user_y) * lifi.Popt / lifi.k) ** 2
# print('self gain: ', self.get_channel_gain(user_x, user_y))
numerator = (self.Rpd * self.get_channel_gain(user_x, user_y) * self.Popt / self.k) ** 2
# uncomment this line to include noise from other LiFi APs
denominator = self.Nlifi * self.Blifi + summation_term
# print(f'numerator: {numerator}, denominator: {denominator}, sum: {summation_term}')
return numerator / denominator
def signal_to_noise_ratio_nlos(self, user_x, user_y, otherLifiAPs:List=None):
numerator = (self.Rpd * self.channel_gain_nlos(user_x, user_y) * self.Popt / self.k) ** 2
denominator = self.Nlifi * self.Blifi
return numerator / denominator
def distance(self, user_x, user_y):
user_position = np.array([user_x, user_y, self.h])
distance = np.linalg.norm(user_position - self.lifi_position)
return distance
def optical_gain(self, angle_incidence):
if 0 <= angle_incidence <= self.FOV:
return (self.ref_index**2) / (np.sin(self.FOV)**2)
else:
return 0
def angle_incidence(self, user_x, user_y):
d = self.distance(user_x, user_y)
return np.arccos((self.room_z - self.h) / d)
if __name__ == "__main__":
x, y = 1.25, 1.25
lifi_ap1 = LifiAccessPoint(x=1.25, y=1.25)
print(lifi_ap1.channel_gain_nlos(1.37, 2.13))
lifi_ap2 = LifiAccessPoint(x=1.25, y=3.75)
lifi_ap3 = LifiAccessPoint(x=3.75, y=3.75)
lifi_ap4 = LifiAccessPoint(x=3.75, y=1.25)
ang_incidence = lifi_ap1.angle_incidence(x, y)
optical_gain = lifi_ap1.optical_gain(ang_incidence)
# print(ang_incidence)
# print(optical_gain)
# H = lifi_ap1.get_channel_gain(x, y)
print('Location: ', 0, 0)
snr = lifi_ap1.signal_to_noise_ratio(0, 0, otherLifiAPs=[lifi_ap2, lifi_ap3, lifi_ap4])
print(snr)
print('Location: ', 1.25, 1.25)
snr = lifi_ap1.signal_to_noise_ratio(1.2, 1.2, otherLifiAPs=[lifi_ap2, lifi_ap3, lifi_ap4])
print(snr)