-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
123 lines (92 loc) · 4.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import yaml
import torch
import numpy as np
from argparse import ArgumentParser
from dataset import datasetLoaders
from arch import FPN
from lossFunction import lossFunction
from utils import score_iou
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
def main():
parser = ArgumentParser()
parser.add_argument("--configFile", default='configs.yaml', help="Config file with parameters for training")
args = parser.parse_args()
cuda = torch.cuda.is_available()
device = torch.device("cuda" if cuda else "cpu")
args.device = device
with open(args.configFile) as f:
yamlObject = yaml.load(f)
#datatype
trainSamples = yamlObject['trainSamples']
valSamples = yamlObject['valSamples']
testSamples = yamlObject['testSamples']
batchSize = yamlObject['batchSize']
lr = yamlObject['learningRate']
epochs = yamlObject['epochs']
betas = yamlObject['betas']
deccay = yamlObject['weightDecay']
trainLoader, valLoader, testLoader = datasetLoaders(trainSamples, valSamples, testSamples, batchSize)
model = FPN()
optimizer = torch.optim.Adam(model.parameters(), lr, betas=betas, weight_decay=deccay)
model.to(args.device)
writer = SummaryWriter()
lastScore = 0.0
lastLoss = 99
trainLastLoss = 99
for numEpoch in range(1, epochs + 1):
trainLossEpoch = []
trainBoxLossEpoch = []
trainclassLossEpoch = []
valLossEpoch = []
valBoxLossEpoch = []
valclassLossEpoch = []
score = []
#training Step
model.train()
for i, batch in enumerate(trainLoader):
image, label = batch
image = image.to(device)
label = label.to(device)
prediction = model(image)
totalLoss, boxLoss, classLoss = lossFunction(prediction, label)
loss = totalLoss.mean()
loss.backward()
optimizer.step()
trainLossEpoch.append(totalLoss)
trainBoxLossEpoch.append(boxLoss)
trainclassLossEpoch.append(classLoss)
writer.add_scalar("Loss/total_Loss", torch.mean(torch.cat(trainLossEpoch)), numEpoch)
writer.add_scalar("Loss/box_Loss", torch.mean(torch.cat(trainBoxLossEpoch)), numEpoch)
writer.add_scalar("Loss/classification_loss", torch.mean(torch.cat(trainclassLossEpoch)), numEpoch)
#validation step
with torch.no_grad():
for i, batch in enumerate(valLoader):
image, label = batch
image = image.to(device)
label = label.to(device)
prediction = model(image)
valLoss, boxLoss, classLoss = lossFunction(prediction, label)
valLossEpoch.append(valLoss)
valBoxLossEpoch.append(boxLoss)
valclassLossEpoch.append(classLoss)
iou = score_iou(np.array(prediction[:, 1:].reshape((5)).cpu()), np.array(label[:, 1:].reshape((5)).cpu()))
score.append(iou)
score = np.mean(np.array(score))
writer.add_scalar("ValLoss/total_Loss", torch.mean(torch.cat(valLossEpoch)), numEpoch)
writer.add_scalar("ValLoss/box_Loss", torch.mean(torch.cat(valBoxLossEpoch)), numEpoch)
writer.add_scalar("ValLoss/classification_loss", torch.mean(torch.cat(valclassLossEpoch)), numEpoch)
writer.add_scalar("metrics/iou", score, numEpoch)
curLoss = torch.mean(torch.cat(valLossEpoch))
if curLoss < lastLoss:
torch.save(model.state_dict(), "noUpsample/bestLoss.pickle")
lastLoss = curLoss
if lastScore < score:
torch.save(model.state_dict(), "noUpsample/bestScore.pickle")
lastScore = score
if totalLoss.mean() < trainLastLoss:
torch.save(model.state_dict(), "noUpsample/bestTrainLoss.pickle")
trainLastLoss = totalLoss.mean()
print('Epoch number: %d, trainLoss: %f, valLoss: %f, score: %f, bestScore: %f, lastLoss: %f' %(numEpoch, torch.mean(torch.cat(trainLossEpoch)), torch.mean(torch.cat(valLossEpoch)), score, lastScore, lastLoss))
if __name__ == '__main__':
main()