diff --git a/test.py b/test.py index a06f62a..5a41a16 100644 --- a/test.py +++ b/test.py @@ -154,7 +154,7 @@ def test(data, "class_id": int(cls), "box_caption": "%s %.3f" % (names[cls], conf), "scores": {"class_score": conf}, - "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()] + "domain": "pixel"} for *xyxy, conf, cls in predn.tolist()] boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name)) @@ -164,14 +164,14 @@ def test(data, image_id = int(path.stem) if path.stem.isnumeric() else path.stem box = xyxy2xywh(predn[:, :4]) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner - for p, b in zip(pred.tolist(), box.tolist()): + for p, b in zip(predn.tolist(), box.tolist()): jdict.append({'image_id': image_id, 'category_id': coco91class[int(p[15])] if is_coco else int(p[15]), 'bbox': [round(x, 3) for x in b], 'score': round(p[4], 5)}) # Assign all predictions as incorrect - correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) + correct = torch.zeros(predn.shape[0], niou, dtype=torch.bool, device=device) if nl: detected = [] # target indices tcls_tensor = labels[:, 0] @@ -180,7 +180,7 @@ def test(data, tbox = xywh2xyxy(labels[:, 1:5]) scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels if plots: - confusion_matrix.process_batch(pred, torch.cat((labels[:, 0:1], tbox), 1)) + confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1)) # Per target class for cls in torch.unique(tcls_tensor):