forked from NVIDIA/NVFlare
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_xgboost.py
76 lines (60 loc) · 2.03 KB
/
test_xgboost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import pandas as pd
import xgboost as xgb
from sklearn.metrics import roc_auc_score
def xgboost_args_parser():
parser = argparse.ArgumentParser(description="Test XGBoost models")
parser.add_argument(
"--test_data_path",
type=str,
default="./dataset/test.csv",
help="testing dataset file path",
)
parser.add_argument("--model_path", type=str, help="model path")
return parser
def prepare_data(data_path: str):
df = pd.read_csv(data_path)
# Split to feature and label
X = df.iloc[:, 1:]
y = df.iloc[:, 0]
return X, y
def get_training_parameters(args):
# use logistic regression loss for binary classification
# use auc as metric
param = {
"objective": "binary:logistic",
"eta": 0.1,
"max_depth": 8,
"eval_metric": "auc",
"nthread": 16,
}
return param
def main():
parser = xgboost_args_parser()
args = parser.parse_args()
test_data_path = args.test_data_path
model_path = args.model_path
# Load data
X_test, y_test = prepare_data(test_data_path)
# construct xgboost DMatrix
dmat_test = xgb.DMatrix(X_test, label=y_test)
# test model
xgb_params = get_training_parameters(args)
bst = xgb.Booster(xgb_params, model_file=model_path)
y_pred = bst.predict(dmat_test)
print("AUC score: ", roc_auc_score(y_test, y_pred))
if __name__ == "__main__":
main()