diff --git a/experiments/thetagpu/jobs/minimalistic-frnn-test.sh b/experiments/thetagpu/jobs/minimalistic-frnn-test.sh index 8ad8a26..486f055 100755 --- a/experiments/thetagpu/jobs/minimalistic-frnn-test.sh +++ b/experiments/thetagpu/jobs/minimalistic-frnn-test.sh @@ -1,7 +1,7 @@ #!/bin/bash #COBALT -n 1 -#COBALT -t 20 -#COBALT -q single-gpu +#COBALT -t 140 +#COBALT -q full-node #COBALT -A datascience source ../../../build/activate-dhenv.sh diff --git a/src/scalbo/scalbo/benchmark/minimalistic_frnn.py b/src/scalbo/scalbo/benchmark/minimalistic_frnn.py index cab44c1..ac5a1e6 100644 --- a/src/scalbo/scalbo/benchmark/minimalistic_frnn.py +++ b/src/scalbo/scalbo/benchmark/minimalistic_frnn.py @@ -106,6 +106,24 @@ def on_batch_end(self, batch, logs=None): self.model.reset_states() +class LayerReset(tf.keras.layers.Layer): + def __init__(self, layer): + super(LayerReset, self).__init__() + self._layer = layer + + def call(self, batches_to_reset): + def reset_states(layer, batches_to_reset): + for j, reset in enumerate(tf.unstack(batches_to_reset)): + if reset != 0: + for state in layer.states: + assert len(batches_to_reset) == state.shape[0] + batch_states = tf.keras.backend.get_value(state) + batch_states[j] = 0 + tf.keras.backend.set_value(state, batch_states) + # reset_states(self._layer, batches_to_reset) + return batches_to_reset + + class ModelBuilder(object): def __init__(self, conf): self.conf = conf @@ -217,53 +235,34 @@ def build_model(self): pre_rnn_model = tf.keras.Model(inputs=pre_rnn_input, outputs=pre_rnn) pre_rnn_model.summary() - # + x_input = Input(batch_shape=batch_input_shape) if num_1D > 0 or model_conf.get('extra_dense_input', False): x_in = TimeDistributed(pre_rnn_model)(x_input) else: x_in = x_input - + # ========== - # TCN MODEL + # RNN MODEL # ========== - if model_conf.get('keras_tcn', False): - tcn_layers = model_conf['tcn_layers'] - tcn_dropout = model_conf['tcn_dropout'] - nb_filters = model_conf['tcn_hidden'] - kernel_size = model_conf['kernel_size_temporal'] - nb_stacks = model_conf['tcn_nbstacks'] - use_skip_connections = model_conf['tcn_skip_connect'] - activation = model_conf['tcn_activation'] - use_batch_norm = model_conf['tcn_batch_norm'] - # for _ in range(model_conf['tcn_pack_layers']): - # x_in = TCN( - # use_batch_norm=use_batch_norm, activation=activation, - # use_skip_connections=use_skip_connections, - # nb_stacks=nb_stacks, kernel_size=kernel_size, - # nb_filters=nb_filters, num_layers=tcn_layers, - # dropout_rate=tcn_dropout)(x_in) - # x_in = Dropout(dropout_prob)(x_in) - else: - # ========== - # RNN MODEL - # ========== - model_kwargs = dict(return_sequences=return_sequences, - # batch_input_shape=batch_input_shape, - stateful=stateful, - kernel_regularizer=l2(regularization), - recurrent_regularizer=l2(regularization), - bias_regularizer=l2(regularization), - ) - if rnn_type != 'CuDNNLSTM': - # recurrent_dropout is unsupported in cuDNN library - model_kwargs['recurrent_dropout'] = dropout_prob # recurrent states - model_kwargs['dropout'] = dropout_prob # input states - for _ in range(model_conf['rnn_layers']): - x_in = rnn_model(rnn_size, **model_kwargs)(x_in) - x_in = Dropout(dropout_prob)(x_in) - if return_sequences: - x_out = TimeDistributed(Dense(1, activation=output_activation))(x_in) + model_kwargs = dict(return_sequences=return_sequences, + # batch_input_shape=batch_input_shape, + stateful=stateful, + kernel_regularizer=l2(regularization), + recurrent_regularizer=l2(regularization), + bias_regularizer=l2(regularization), + ) + if rnn_type != 'CuDNNLSTM': + # recurrent_dropout is unsupported in cuDNN library + model_kwargs['recurrent_dropout'] = dropout_prob # recurrent states + model_kwargs['dropout'] = dropout_prob # input states + for _ in range(model_conf['rnn_layers']): + rnn_layer = rnn_model(rnn_size, **model_kwargs) + x_in = rnn_layer(x_in) + x_in = Dropout(dropout_prob)(x_in) + if return_sequences: + x_out = TimeDistributed(Dense(1, activation=output_activation))(x_in) + model = tf.keras.Model(inputs=x_input, outputs=x_out) # bug with tensorflow/Keras # TODO(KGF): what is this bug? this is the only direct "tensorflow" @@ -278,6 +277,38 @@ def build_model(self): model.reset_states() return model + def build_model_zeros(self): + conf = self.conf + model_conf = conf['model'] + length = model_conf['length'] + use_signals = conf['paths']['use_signals'] + num_signals = sum([sig.num_channels for sig in use_signals]) + batch_size = conf['training']['batch_size'] + batch_input_shape = (batch_size, length, num_signals) + batch_output_shape = (batch_size, length, 1) + x_input = Input(batch_shape=batch_input_shape) + + output = output = Lambda(lambda _: tf.zeros(batch_output_shape))(x_input) + + model = tf.keras.Model(inputs=x_input, outputs=output) + return model + + def build_model_ones(self): + conf = self.conf + model_conf = conf['model'] + length = model_conf['length'] + use_signals = conf['paths']['use_signals'] + num_signals = sum([sig.num_channels for sig in use_signals]) + batch_size = conf['training']['batch_size'] + batch_input_shape = (batch_size, length, num_signals) + batch_output_shape = (batch_size, length, 1) + x_input = Input(batch_shape=batch_input_shape) + + output = output = Lambda(lambda _: tf.ones(batch_output_shape))(x_input) + + model = tf.keras.Model(inputs=x_input, outputs=output) + return model + def build_optimizer(self): conf = self.conf lr = conf['model']["lr"] @@ -355,6 +386,10 @@ def load_dataset(self, shot_list, loader): batch_generator, output_signature=( tf.TensorSpec(shape=(batch_size, length, num_signals), dtype=tf.float32), + # ( + # tf.TensorSpec(shape=(batch_size, length, num_signals), dtype=tf.float32), + # tf.TensorSpec(shape=(batch_size, 1), dtype=tf.int32), + # ), tf.TensorSpec(shape=(batch_size, length, 1), dtype=tf.float32), ) ) @@ -528,11 +563,10 @@ def run(config: None): steps_per_epoch=steps_per_epoch, validation_data=valid_dataset, validation_steps=validation_steps, - # callbacks=ResetStatesCallback(), ) - # with open('/lus/grand/projects/datascience/jgouneau/deephyper/frnn/exp/outputs/history.json', 'w') as file: - # json.dump(history.history, file) + with open('/lus/grand/projects/datascience/jgouneau/deephyper/frnn/exp/outputs/stateless_model.json', 'w') as file: + json.dump(history.history, file) # evaluate it evaluator = ModelEvaluator(model, loader, conf) @@ -549,7 +583,7 @@ def run(config: None): print('Test Loss: {:.3e}'.format(test_loss)) print('Test ROC: {:.4f}'.format(test_roc)) - return valid_roc + # return valid_roc if __name__ == '__main__': conf = {