-
Notifications
You must be signed in to change notification settings - Fork 127
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: Add Anthropic prompt caching support, add example (#1006)
* Add prompt caching, add example * Print prompt caching data in example * Lint * Anthropic allows multiple system messages, simplify * PR feedback * Update prompt_caching.py example to use ChatPromptBuilder 2.5 fixes * Small fixes * Add unit tests * Improve UX for prompt caching example * Add unit test for _convert_to_anthropic_format * More integration tests * Update test to turn on/off prompt cache
- Loading branch information
Showing
4 changed files
with
314 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# To run this example, you will need to set a `ANTHROPIC_API_KEY` environment variable. | ||
|
||
import time | ||
|
||
from haystack import Pipeline | ||
from haystack.components.builders import ChatPromptBuilder | ||
from haystack.components.converters import HTMLToDocument | ||
from haystack.components.fetchers import LinkContentFetcher | ||
from haystack.dataclasses import ChatMessage, StreamingChunk | ||
from haystack.utils import Secret | ||
|
||
from haystack_integrations.components.generators.anthropic import AnthropicChatGenerator | ||
|
||
# Advanced: We can also cache the HTTP GET requests for the HTML content to avoid repeating requests | ||
# that fetched the same content. | ||
# This type of caching requires requests_cache library to be installed | ||
# Uncomment the following two lines to caching the HTTP requests | ||
|
||
# import requests_cache | ||
# requests_cache.install_cache("anthropic_demo") | ||
|
||
ENABLE_PROMPT_CACHING = True # Toggle this to enable or disable prompt caching | ||
|
||
|
||
def create_streaming_callback(): | ||
first_token_time = None | ||
|
||
def stream_callback(chunk: StreamingChunk) -> None: | ||
nonlocal first_token_time | ||
if first_token_time is None: | ||
first_token_time = time.time() | ||
print(chunk.content, flush=True, end="") | ||
|
||
return stream_callback, lambda: first_token_time | ||
|
||
|
||
# Until prompt caching graduates from beta, we need to set the anthropic-beta header | ||
generation_kwargs = {"extra_headers": {"anthropic-beta": "prompt-caching-2024-07-31"}} if ENABLE_PROMPT_CACHING else {} | ||
|
||
claude_llm = AnthropicChatGenerator( | ||
api_key=Secret.from_env_var("ANTHROPIC_API_KEY"), generation_kwargs=generation_kwargs | ||
) | ||
|
||
pipe = Pipeline() | ||
pipe.add_component("fetcher", LinkContentFetcher()) | ||
pipe.add_component("converter", HTMLToDocument()) | ||
pipe.add_component("prompt_builder", ChatPromptBuilder(variables=["documents"])) | ||
pipe.add_component("llm", claude_llm) | ||
pipe.connect("fetcher", "converter") | ||
pipe.connect("converter", "prompt_builder") | ||
pipe.connect("prompt_builder.prompt", "llm.messages") | ||
|
||
system_message = ChatMessage.from_system( | ||
"Claude is an AI assistant that answers questions based on the given documents.\n" | ||
"Here are the documents:\n" | ||
"{% for d in documents %} \n" | ||
" {{d.content}} \n" | ||
"{% endfor %}" | ||
) | ||
|
||
if ENABLE_PROMPT_CACHING: | ||
system_message.meta["cache_control"] = {"type": "ephemeral"} | ||
|
||
questions = [ | ||
"What's this paper about?", | ||
"What's the main contribution of this paper?", | ||
"How can findings from this paper be applied to real-world problems?", | ||
] | ||
|
||
for question in questions: | ||
print(f"Question: {question}") | ||
start_time = time.time() | ||
streaming_callback, get_first_token_time = create_streaming_callback() | ||
# reset LLM streaming callback to initialize new timers in streaming mode | ||
claude_llm.streaming_callback = streaming_callback | ||
|
||
result = pipe.run( | ||
data={ | ||
"fetcher": {"urls": ["https://ar5iv.labs.arxiv.org/html/2310.04406"]}, | ||
"prompt_builder": {"template": [system_message, ChatMessage.from_user(f"Answer the question: {question}")]}, | ||
} | ||
) | ||
|
||
end_time = time.time() | ||
total_time = end_time - start_time | ||
time_to_first_token = get_first_token_time() - start_time | ||
print("\n" + "-" * 100) | ||
print(f"Total generation time: {total_time:.2f} seconds") | ||
print(f"Time to first token: {time_to_first_token:.2f} seconds") | ||
# first time we create a prompt cache usage key 'cache_creation_input_tokens' will have a value of the number of | ||
# tokens used to create the prompt cache | ||
# on first subsequent cache hit we'll see a usage key 'cache_read_input_tokens' having a value of the number of | ||
# tokens read from the cache | ||
token_stats = result["llm"]["replies"][0].meta.get("usage") | ||
if token_stats.get("cache_creation_input_tokens", 0) > 0: | ||
print("Cache created! ", end="") | ||
elif token_stats.get("cache_read_input_tokens", 0) > 0: | ||
print("Cache hit! ", end="") | ||
else: | ||
print("Cache not used, something is wrong with the prompt caching setup. ", end="") | ||
print(f"Cache usage details: {token_stats}") | ||
print("\n" + "=" * 100) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters