From 89ff7aa45900861d1ccc8dfde8c3a3cf1a7b944f Mon Sep 17 00:00:00 2001 From: Amna Mubashar Date: Fri, 25 Oct 2024 14:59:32 +0200 Subject: [PATCH] Add instructions to examples --- integrations/azure_ai_search/example/document_store.py | 8 ++++++++ .../azure_ai_search/example/embedding_retrieval.py | 9 +++++++++ integrations/azure_ai_search/tests/conftest.py | 2 +- 3 files changed, 18 insertions(+), 1 deletion(-) diff --git a/integrations/azure_ai_search/example/document_store.py b/integrations/azure_ai_search/example/document_store.py index ac490aa5e..b3a87c64a 100644 --- a/integrations/azure_ai_search/example/document_store.py +++ b/integrations/azure_ai_search/example/document_store.py @@ -3,6 +3,14 @@ from haystack_integrations.document_stores.azure_ai_search import AzureAISearchDocumentStore +""" +This example demonstrates how to use the AzureAISearchDocumentStore to write and filter documents. +To run this example, you'll need an Azure Search service endpoint and API key, which can either be +set as environment variables (AZURE_SEARCH_SERVICE_ENDPOINT and AZURE_SEARCH_API_KEY) or +provided directly to AzureAISearchDocumentStore(as params "api_key", "azure_endpoint"). +Otherwise you can use DefaultAzureCredential to authenticate with Azure services. +See more details at https://learn.microsoft.com/en-us/azure/search/keyless-connections?tabs=python%2Cazure-cli +""" document_store = AzureAISearchDocumentStore( metadata_fields={"version": float, "label": str}, index_name="document-store-example", diff --git a/integrations/azure_ai_search/example/embedding_retrieval.py b/integrations/azure_ai_search/example/embedding_retrieval.py index f026d77b8..20904f5f7 100644 --- a/integrations/azure_ai_search/example/embedding_retrieval.py +++ b/integrations/azure_ai_search/example/embedding_retrieval.py @@ -5,6 +5,15 @@ from haystack_integrations.components.retrievers.azure_ai_search import AzureAISearchEmbeddingRetriever from haystack_integrations.document_stores.azure_ai_search import AzureAISearchDocumentStore +""" +This example demonstrates how to use the AzureAISearchEmbeddingRetriever to retrieve documents based on a query. +To run this example, you'll need an Azure Search service endpoint and API key, which can either be +set as environment variables (AZURE_SEARCH_SERVICE_ENDPOINT and AZURE_SEARCH_API_KEY) or +provided directly to AzureAISearchDocumentStore(as params "api_key", "azure_endpoint"). +Otherwise you can use DefaultAzureCredential to authenticate with Azure services. +See more details at https://learn.microsoft.com/en-us/azure/search/keyless-connections?tabs=python%2Cazure-cli +""" + document_store = AzureAISearchDocumentStore() model = "sentence-transformers/all-mpnet-base-v2" diff --git a/integrations/azure_ai_search/tests/conftest.py b/integrations/azure_ai_search/tests/conftest.py index 2101ced3b..2427d2550 100644 --- a/integrations/azure_ai_search/tests/conftest.py +++ b/integrations/azure_ai_search/tests/conftest.py @@ -10,7 +10,7 @@ from haystack_integrations.document_stores.azure_ai_search import AzureAISearchDocumentStore # This is the approximate time in seconds it takes for the documents to be available in Azure Search index -SLEEP_TIME_IN_SECONDS = 5 +SLEEP_TIME_IN_SECONDS = 10 @pytest.fixture()