diff --git a/integrations/neo4j-document-store.md b/integrations/neo4j-document-store.md index db533be8..c66002ae 100644 --- a/integrations/neo4j-document-store.md +++ b/integrations/neo4j-document-store.md @@ -135,6 +135,8 @@ docker run \ `Neo4jEmbeddingRetriever` component can be used to retrieve documents from Neo4j by querying vector index using an embedded query. Below is a pipeline which finds documents using query embedding as well as [metadata filtering](https://docs.haystack.deepset.ai/docs/metadata-filtering): ```python +from typing import List + from haystack import Document, Pipeline from haystack.components.embedders import SentenceTransformersTextEmbedder, SentenceTransformersDocumentEmbedder from neo4j_haystack import Neo4jEmbeddingRetriever, Neo4jDocumentStore @@ -150,7 +152,7 @@ document_store = Neo4jDocumentStore( documents = [ Document(content="My name is Morgan and I live in Paris.", meta={"release_date": "2018-12-09"})] -document_embedder = SentenceTransformersDocumentEmbedder(model=model_name) +document_embedder = SentenceTransformersDocumentEmbedder(model="sentence-transformers/all-MiniLM-L6-v2") document_embedder.warm_up() documents_with_embeddings = document_embedder.run(documents)