diff --git a/integrations/anthropic.md b/integrations/anthropic.md index 7dd52f1b..0dc3338c 100644 --- a/integrations/anthropic.md +++ b/integrations/anthropic.md @@ -8,28 +8,131 @@ authors: github: deepset-ai twitter: deepset_ai linkedin: deepset-ai -pypi: https://pypi.org/project/farm-haystack -repo: https://github.com/deepset-ai/haystack +pypi: https://pypi.org/project/anthropic-haystack/ +repo: https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/anthropic type: Model Provider -report_issue: https://github.com/deepset-ai/haystack/issues +report_issue: https://github.com/deepset-ai/haystack-core-integrations/issues logo: /logos/anthropic.png +version: Haystack 2.0 +toc: true --- -You can use [Anhtropic Claude](https://docs.anthropic.com/claude/reference/getting-started-with-the-api) in your Haystack pipelines with the [PromptNode](https://docs.haystack.deepset.ai/v1.25/docs/prompt_node#using-anthropic-generative-models), which can also be used with and [Agent](https://docs.haystack.deepset.ai/v1.25/docs/agent). +### **Table of Contents** -## Installation +- [Haystack 2.0](#haystack-20) + - [Installation](#installation) + - [Usage](#usage) +- [Haystack 1.x](#haystack-1x) + - [Installation (1.x)](#installation-1x) + - [Usage (1.x)](#usage-1x) + +## Overview + +This integration supports Anthropic Claude models provided through Anthropic’s own inferencing infrastructure. For a full list of available models, check out [the Anthropic Claude documentation](https://www.anthropic.com/claude). + +## Haystack 2.0 + +You can use Anthropic models with [`AnthropicGenerator`](https://docs.haystack.deepset.ai/docs/anthropicgenerator) and [`AnthropicChatGenerator`](https://docs.haystack.deepset.ai/docs/anthropicchatgenerator). + +Currently, available models are: + +- `claude-2.1` +- `claude-3-haiku-20240307` +- `claude-3-sonnet-20240229` (default) +- `claude-3-opus-20240229` + +### Installation + +```bash +pip install anthropic-haystack +``` + +### Usage + +Based on your use case, you can choose between [`AnthropicGenerator`](https://docs.haystack.deepset.ai/docs/anthropicgenerator) or [`AnthropicChatGenerator`](https://docs.haystack.deepset.ai/docs/anthropicchatgenerator) to work with Anthropic models. To learn more about the difference, visit the [Generators vs Chat Generators](https://docs.haystack.deepset.ai/docs/generators-vs-chat-generators) guide. +Before using, make sure to set the `ANTHROPIC_API_KEY` environment variable. + +#### Using `AnthropicChatGenerator` + +Below is an example RAG Pipeline where we answer a predefined question using the contents from the below mentioned URL pointing to Anthropic prompt engineering guide. We fetch the contents of the URL and generate an answer with the `AnthropicChatGenerator`. + +```python +from haystack import Pipeline +from haystack.components.builders import DynamicChatPromptBuilder +from haystack.components.converters import HTMLToDocument +from haystack.components.fetchers import LinkContentFetcher +from haystack.components.generators.utils import print_streaming_chunk +from haystack.dataclasses import ChatMessage +from haystack.utils import Secret + +from haystack_integrations.components.generators.anthropic import AnthropicChatGenerator + +messages = [ + ChatMessage.from_system("You are a prompt expert who answers questions based on the given documents."), + ChatMessage.from_user("Here are the documents: {{documents}} \\n Answer: {{query}}"), +] + +rag_pipeline = Pipeline() +rag_pipeline.add_component("fetcher", LinkContentFetcher()) +rag_pipeline.add_component("converter", HTMLToDocument()) +rag_pipeline.add_component("prompt_builder", DynamicChatPromptBuilder(runtime_variables=["documents"])) +rag_pipeline.add_component( + "llm", + AnthropicChatGenerator( + api_key=Secret.from_env_var("ANTHROPIC_API_KEY"), + model="claude-3-sonnet-20240229", + streaming_callback=print_streaming_chunk, + ), +) + + +rag_pipeline.connect("fetcher", "converter") +rag_pipeline.connect("converter", "prompt_builder") +rag_pipeline.connect("prompt_builder", "llm") + +question = "What are the best practices in prompt engineering?" +rag_pipeline.run( + data={ + "fetcher": {"urls": ["https://docs.anthropic.com/claude/docs/prompt-engineering"]}, + "prompt_builder": {"template_variables": {"query": question}, "prompt_source": messages}, + } +) +``` + +#### Using `AnthropicGenerator` + +Below is an example of using `AnthropicGenerator`: + +```python +from haystack_integrations.components.generators.anthropic import AnthropicGenerator + +client = AnthropicGenerator(model="claude-2.1") +response = client.run("What's Natural Language Processing? Be brief.") +print(response) + +>>{'replies': ['Natural language processing (NLP) is a branch of artificial intelligence focused on enabling +>>computers to understand, interpret, and manipulate human language. The goal of NLP is to read, decipher, +>> understand, and make sense of the human languages in a manner that is valuable.'], 'meta': {'model': +>> 'claude-2.1', 'index': 0, 'finish_reason': 'end_turn', 'usage': {'input_tokens': 18, 'output_tokens': 58}}} +``` + +## Haystack 1.x + +You can use [Anhtropic Claude](https://docs.anthropic.com/claude/reference/getting-started-with-the-api) in your Haystack 1.x pipelines with the [PromptNode](https://docs.haystack.deepset.ai/v1.25/docs/prompt_node#using-anthropic-generative-models), which can also be used with and [Agent](https://docs.haystack.deepset.ai/v1.25/docs/agent). + +### Installation (1.x) ```bash pip install farm-haystack[inference] ``` -## Usage +### Usage (1.x) You can use Anthropic models in various ways: -### Using Claude with PromptNode +#### Using Claude with PromptNode -To use Claude for prompting and generating answers, initialize a `PromptNode` with the model name, your Anthrpic API key and a prompt template. You can then use this `PromptNode` in a question answering pipeline to generate answers based on the given context. +To use Claude for prompting and generating answers, initialize a `PromptNode` with the model name, your Anthropic API key and a prompt template. You can then use this `PromptNode` in a question answering pipeline to generate answers based on the given context. Below is the example of a `PromptNode` that uses a custom `PromptTemplate` @@ -63,4 +166,4 @@ from haystack.nodes import PromptNode prompt_node = PromptNode(model_name_or_path="YOUR_ANTHROPIC_API_KEY", api_key=anthropic_key, stop_words=["Observation:"]) agent = Agent(prompt_node=prompt_node) -``` \ No newline at end of file +```