diff --git a/integrations/cohere.md b/integrations/cohere.md index af2c84bf..6fe8a8b6 100644 --- a/integrations/cohere.md +++ b/integrations/cohere.md @@ -1,33 +1,127 @@ --- layout: integration name: Cohere -description: Use Cohere with Haystack +description: Use Cohere models with Haystack authors: - name: deepset socials: github: deepset-ai twitter: deepset_ai linkedin: deepset-ai -pypi: https://pypi.org/project/farm-haystack -repo: https://github.com/deepset-ai/haystack +pypi: https://pypi.org/project/cohere-haystack/ +repo: https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/cohere type: Model Provider -report_issue: https://github.com/deepset-ai/haystack/issues +report_issue: https://github.com/deepset-ai/haystack-core-integrations/issues logo: /logos/cohere.png +version: Haystack 2.0 +toc: true --- +### **Table of Contents** + +- [Haystack 2.0](#haystack-20) + - [Installation](#installation) + - [Usage](#usage) +- [Haystack 1.x](#haystack-1x) + - [Installation (1.x)](#installation-1x) + - [Usage (1.x)](#usage-1x) + +## Haystack 2.0 + +You can use [Cohere Models](https://cohere.com/) in your Haystack 2.0 pipelines with the [Generators](https://docs.haystack.deepset.ai/v2.0/docs/generators) and [Embedders](https://docs.haystack.deepset.ai/v2.0/docs/embedders). + +### Installation + +```bash +pip install cohere-haystack +``` + +### Usage + +You can use Cohere models in various ways: + +#### Embedding Models + +You can leverage `/embed` models from Cohere through two components: [CohereTextEmbedder](https://github.com/deepset-ai/haystack-core-integrations/blob/main/integrations/cohere/src/cohere_haystack/embedders/text_embedder.py) and [CohereDocumentEmbedder](https://github.com/deepset-ai/haystack-core-integrations/blob/main/integrations/cohere/src/cohere_haystack/embedders/document_embedder.py). + +To create semantic embeddings for documents, use `CohereDocumentEmbedder` in your indexing pipeline. For generating embeddings for queries, use `CohereTextEmbedder`. Once you've selected the suitable component for your specific use case, initialize the component with the model name and Cohere API key. + +Below is the example indexing pipeline with `InMemoryDocumentStore`, `CohereDocumentEmbedder` and `DocumentWriter`: + +```python +from haystack import Document, Pipeline +from haystack.document_stores import InMemoryDocumentStore +from haystack.components.writers import DocumentWriter +from cohere_haystack.embedders.document_embedder import CohereDocumentEmbedder + +document_store = InMemoryDocumentStore(embedding_similarity_function="cosine") + +documents = [Document(content="My name is Wolfgang and I live in Berlin"), + Document(content="I saw a black horse running"), + Document(content="People speak French in France"), + Document(content="Germany has many big cities")] + +indexing_pipeline = Pipeline() +indexing_pipeline.add_component("embedder", CohereDocumentEmbedder(api_key="COHERE_API_KEY", model_name="embed-multilingual-v2.0")) +indexing_pipeline.add_component("writer", DocumentWriter(document_store=document_store)) +indexing_pipeline.connect("embedder", "writer") + +indexing_pipeline.run({"embedder": {"documents": documents}}) +``` + +#### Generative Models (LLMs) + +To use `/generate` models from Cohere, initialize a `CohereGenerator` with the model name, Cohere API key and the prompt template. You can then use this `CohereGenerator` in a question answering pipeline after the `PromptBuilder`. + +Below is the example of generative questions answering pipeline using RAG with `PromptBuilder` and `CohereGenerator`: + +```python +from haystack import Pipeline +from haystack.components.retrievers import InMemoryEmbeddingRetriever +from haystack.components.builders.prompt_builder import PromptBuilder +from cohere_haystack.embedders.text_embedder import CohereTextEmbedder +from cohere_haystack.generator import CohereGenerator + +template = """ +Given the following information, answer the question. + +Context: +{% for document in documents %} + {{ document.text }} +{% endfor %} + +Question: What's the official language of {{ country }}? +""" +pipe = Pipeline() +pipe.add_component("embedder", CohereTextEmbedder(api_key=api_key, model_name="embed-multilingual-v2.0")) +pipe.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store)) +pipe.add_component("prompt_builder", PromptBuilder(template=template)) +pipe.add_component("llm", CohereGenerator(api_key=api_key, model_name="command-light")) +pipe.connect("embedder.embedding", "retriever.query_embedding") +pipe.connect("retriever", "prompt_builder.documents") +pipe.connect("prompt_builder", "llm") + +pipe.run({ + "embedder": {"text": "France"}, + "prompt_builder": {"country": "France"} +}) +``` + +## Haystack 1.x + You can use [Cohere Models](https://cohere.com/) in your Haystack pipelines with the [EmbeddingRetriever](https://docs.haystack.deepset.ai/docs/retriever#embedding-retrieval-recommended), [PromptNode](https://docs.haystack.deepset.ai/docs/prompt_node), and [CohereRanker](https://docs.haystack.deepset.ai/docs/ranker#cohereranker). -## Installation +### Installation (1.x) ```bash pip install farm-haystack ``` -## Usage +### Usage (1.x) You can use Cohere models in various ways: -### Embedding Models +#### Embedding Models To use `/embed` models from Cohere, initialize an `EmbeddingRetriever` with the model name and Cohere API key. You can then use this `EmbeddingRetriever` in an indexing pipeline to create Cohere embeddings for documents and index them to a document store. @@ -52,7 +146,7 @@ indexing_pipeline.add_node(component=document_store, name="document_store", inpu indexing_pipeline.run(documents=[Document("This is my document")]) ``` -### Generative Models (LLMs) +#### Generative Models (LLMs) To use `/generate` models from Cohere, initialize a `PromptNode` with the model name, Cohere API key and the prompt template. You can then use this `PromptNode` in a question answering pipeline to generate answers based on the given context. @@ -73,7 +167,7 @@ query_pipeline.add_node(component=prompt_node, name="PromptNode", inputs=["Retri query_pipeline.run("YOUR_QUERY") ``` -### Ranker Models +#### Ranker Models To use `/rerank` models from Cohere, initialize a `CohereRanker` with the model name, and Cohere API key. You can then use this `CohereRanker` to sort documents based on their relevancy to the query.