diff --git a/integrations/amazon-sagemaker.md b/integrations/amazon-sagemaker.md new file mode 100644 index 00000000..3a3ae795 --- /dev/null +++ b/integrations/amazon-sagemaker.md @@ -0,0 +1,111 @@ +--- +layout: integration +name: Amazon Sagemaker +description: Use Models from Huggingface, Anthropic, AI21 Labs, Cohere, Meta, and Amazon via Amazon Sagemaker with Haystack +authors: + - name: deepset + socials: + github: deepset-ai + twitter: deepset_ai + linkedin: deepset-ai +pypi: https://pypi.org/project/amazon-sagemaker-haystack +repo: https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/amazon_sagemaker +type: Model Provider +report_issue: https://github.com/deepset-ai/haystack-core-integrations/issues +logo: /logos/aws.png +version: Haystack 2.0 +toc: true +--- + +### Table of Contents + +- [Overview](#overview) +- [Haystack 2.x](#haystack-2x) + - [Installation](#installation) + - [Usage](#usage) +- [Haystack 1.x](#haystack-1x) + - [Installation (1.x)](#installation-1x) + - [Usage (1.x)](#usage-1x) + +## Overview + +[Amazon Sagemaker](https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html) is a comprehensive, fully managed machine learning service +that allows data scientists and developers to build, train, and deploy ML models efficiently. More information can be found on the +[documentation page](https://docs.haystack.deepset.ai/v2.0/docs/sagemakergenerator). + +## Haystack 2.x + +### Installation + +Install the Amazon Sagemaker integration: +```bash +pip install amazon-sagemaker-haystack +``` + +### Usage + +Once installed, you will have access to a [SagemakerGenerator](https://docs.haystack.deepset.ai/v2.0/docs/sagemakergenerator) that supports models from various providers. To know more +about which models are supported, check out [Sagemaker's documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models.html). + +To use this integration for text generation, initialize a `SagemakerGenerator` with the model name and aws credentials: + +```python +import os +haystack_integrations.components.generators.amazon_sagemaker import SagemakerGenerator + +os.environ["AWS_ACCESS_KEY_ID"] = "..." +os.environ["AWS_SECRET_ACCESS_KEY"] = "..." +# This one is optional +os.environ["AWS_REGION_NAME"] = "..." + +model = # Your Sagemaker endpoint name, such as "jumpstart-dft-hf-llm-falcon-7b-instruct-bf16" + +generator = SagemakerGenerator(model=model) +result = generator.run("Who is the best American actor?") +for reply in result["replies"]: + print(reply) +``` +Output: +```shell +'There is no definitive "best" American actor, as acting skill and talent are subjective. +However, some of the most acclaimed and influential American actors include Tom Hanks, +Daniel Day-Lewis, Denzel Washington, Meryl Streep, Rober# t De Niro, Al Pacino, Marlon Brando, +Jack Nicholson, Leonardo DiCaprio and John# ny Depp. Choosing a single "best" actor comes +down to personal preference.' +``` + +Note that different models may require different parameters. One notable example is the Llama2 family of models, +which should be initialized with `{'accept_eula': True}` as a custom attribute: + +```python +generator = SagemakerGenerator(model="jumpstart-dft-meta-textgenerationneuron-llama-2-7b", aws_custom_attributes={"accept_eula": True}) +``` + +## Haystack 1.x + +### Installation (1.x) + +```bash +pip install farm-haystack[aws] +``` + +### Usage (1.x) + +To use Sagemaker models in Haystack 1.x, initialize a `PromptNode` with the model name, AWS credentials and the prompt template. You can then use this `PromptNode` in a question answering pipeline to generate answers based on the given context. + +Below is the example of generative questions answering pipeline using RAG with an `EmbeddingRetriever` using Cohere models and a Sagemaker-powered `PromptNode`: + +```python +from haystack.nodes import PromptNode, EmbeddingRetriever +from haystack.pipelines import Pipeline + +retriever = EmbeddingRetriever( + embedding_model="embed-english-v2.0", document_store=document_store, api_key=COHERE_API_KEY +) +prompt_node = PromptNode(model_name_or_path="sagemaker-model-endpoint-name", model_kwargs={"aws_profile_name": "my_aws_profile_name","aws_region_name": "your-aws-region"}) + +query_pipeline = Pipeline() +query_pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"]) +query_pipeline.add_node(component=prompt_node, name="PromptNode", inputs=["Retriever"]) +query_pipeline.run("YOUR_QUERY") +```