diff --git a/haystack/components/generators/__init__.py b/haystack/components/generators/__init__.py
index a9251b9336..73818abfbb 100644
--- a/haystack/components/generators/__init__.py
+++ b/haystack/components/generators/__init__.py
@@ -1,5 +1,12 @@
from haystack.components.generators.hugging_face_local import HuggingFaceLocalGenerator
from haystack.components.generators.hugging_face_tgi import HuggingFaceTGIGenerator
from haystack.components.generators.openai import OpenAIGenerator, GPTGenerator
+from haystack.components.generators.azure import AzureOpenAIGenerator
-__all__ = ["HuggingFaceLocalGenerator", "HuggingFaceTGIGenerator", "OpenAIGenerator", "GPTGenerator"]
+__all__ = [
+ "HuggingFaceLocalGenerator",
+ "HuggingFaceTGIGenerator",
+ "OpenAIGenerator",
+ "GPTGenerator",
+ "AzureOpenAIGenerator",
+]
diff --git a/haystack/components/generators/azure.py b/haystack/components/generators/azure.py
new file mode 100644
index 0000000000..fd38b5b140
--- /dev/null
+++ b/haystack/components/generators/azure.py
@@ -0,0 +1,158 @@
+import logging
+import os
+from typing import Optional, Callable, Dict, Any
+
+# pylint: disable=import-error
+from openai.lib.azure import AzureADTokenProvider, AzureOpenAI
+
+from haystack import default_to_dict, default_from_dict
+from haystack.components.generators import OpenAIGenerator
+from haystack.components.generators.utils import serialize_callback_handler, deserialize_callback_handler
+from haystack.dataclasses import StreamingChunk
+
+logger = logging.getLogger(__name__)
+
+
+class AzureOpenAIGenerator(OpenAIGenerator):
+ """
+ Enables text generation using OpenAI's large language models (LLMs) on Azure. It supports gpt-4 and gpt-3.5-turbo
+ family of models.
+
+ Users can pass any text generation parameters valid for the `openai.ChatCompletion.create` method
+ directly to this component via the `**generation_kwargs` parameter in __init__ or the `**generation_kwargs`
+ parameter in `run` method.
+
+ For more details on OpenAI models deployed on Azure, refer to the Microsoft
+ [documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/).
+
+
+ ```python
+ from haystack.components.generators import AzureOpenAIGenerator
+ client = AzureOpenAIGenerator(azure_endpoint="",
+ api_key="",
+ azure_deployment="")
+ response = client.run("What's Natural Language Processing? Be brief.")
+ print(response)
+
+ >> {'replies': ['Natural Language Processing (NLP) is a branch of artificial intelligence that focuses on
+ >> the interaction between computers and human language. It involves enabling computers to understand, interpret,
+ >> and respond to natural human language in a way that is both meaningful and useful.'], 'meta': [{'model':
+ >> 'gpt-3.5-turbo-0613', 'index': 0, 'finish_reason': 'stop', 'usage': {'prompt_tokens': 16,
+ >> 'completion_tokens': 49, 'total_tokens': 65}}]}
+ ```
+
+ Key Features and Compatibility:
+ - **Primary Compatibility**: Designed to work seamlessly with gpt-4, gpt-3.5-turbo family of models.
+ - **Streaming Support**: Supports streaming responses from the OpenAI API.
+ - **Customizability**: Supports all parameters supported by the OpenAI API.
+
+ Input and Output Format:
+ - **String Format**: This component uses the strings for both input and output.
+ """
+
+ # pylint: disable=super-init-not-called
+ def __init__(
+ self,
+ azure_endpoint: Optional[str] = None,
+ api_version: Optional[str] = "2023-05-15",
+ azure_deployment: Optional[str] = "gpt-35-turbo",
+ api_key: Optional[str] = None,
+ azure_ad_token: Optional[str] = None,
+ azure_ad_token_provider: Optional[AzureADTokenProvider] = None,
+ organization: Optional[str] = None,
+ streaming_callback: Optional[Callable[[StreamingChunk], None]] = None,
+ system_prompt: Optional[str] = None,
+ generation_kwargs: Optional[Dict[str, Any]] = None,
+ ):
+ """
+ :param azure_endpoint: The endpoint of the deployed model, e.g. `https://example-resource.azure.openai.com/`
+ :param api_version: The version of the API to use. Defaults to 2023-05-15
+ :param azure_deployment: The deployment of the model, usually the model name.
+ :param api_key: The API key to use for authentication.
+ :param azure_ad_token: Azure Active Directory token, see https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id
+ :param azure_ad_token_provider: A function that returns an Azure Active Directory token, will be invoked
+ on every request.
+ :param organization: The Organization ID, defaults to `None`. See
+ [production best practices](https://platform.openai.com/docs/guides/production-best-practices/setting-up-your-organization).
+ :param streaming_callback: A callback function that is called when a new token is received from the stream.
+ The callback function accepts StreamingChunk as an argument.
+ :param system_prompt: The prompt to use for the system. If not provided, the system prompt will be
+ :param generation_kwargs: Other parameters to use for the model. These parameters are all sent directly to
+ the OpenAI endpoint. See OpenAI [documentation](https://platform.openai.com/docs/api-reference/chat) for
+ more details.
+ Some of the supported parameters:
+ - `max_tokens`: The maximum number of tokens the output text can have.
+ - `temperature`: What sampling temperature to use. Higher values mean the model will take more risks.
+ Try 0.9 for more creative applications and 0 (argmax sampling) for ones with a well-defined answer.
+ - `top_p`: An alternative to sampling with temperature, called nucleus sampling, where the model
+ considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens
+ comprising the top 10% probability mass are considered.
+ - `n`: How many completions to generate for each prompt. For example, if the LLM gets 3 prompts and n is 2,
+ it will generate two completions for each of the three prompts, ending up with 6 completions in total.
+ - `stop`: One or more sequences after which the LLM should stop generating tokens.
+ - `presence_penalty`: What penalty to apply if a token is already present at all. Bigger values mean
+ the model will be less likely to repeat the same token in the text.
+ - `frequency_penalty`: What penalty to apply if a token has already been generated in the text.
+ Bigger values mean the model will be less likely to repeat the same token in the text.
+ - `logit_bias`: Add a logit bias to specific tokens. The keys of the dictionary are tokens, and the
+ values are the bias to add to that token.
+ """
+ # We intentionally do not call super().__init__ here because we only need to instantiate the client to interact
+ # with the API.
+
+ # Why is this here?
+ # AzureOpenAI init is forcing us to use an init method that takes either base_url or azure_endpoint as not
+ # None init parameters. This way we accommodate the use case where env var AZURE_OPENAI_ENDPOINT is set instead
+ # of passing it as a parameter.
+ azure_endpoint = azure_endpoint or os.environ.get("AZURE_OPENAI_ENDPOINT")
+ if not azure_endpoint:
+ raise ValueError("Please provide an Azure endpoint or set the environment variable AZURE_OPENAI_ENDPOINT.")
+
+ self.generation_kwargs = generation_kwargs or {}
+ self.system_prompt = system_prompt
+ self.streaming_callback = streaming_callback
+ self.api_version = api_version
+ self.azure_endpoint = azure_endpoint
+ self.azure_deployment = azure_deployment
+ self.organization = organization
+ self.model_name: str = azure_deployment or "gpt-35-turbo"
+
+ self.client = AzureOpenAI(
+ api_version=api_version,
+ azure_endpoint=azure_endpoint,
+ azure_deployment=azure_deployment,
+ api_key=api_key,
+ azure_ad_token=azure_ad_token,
+ azure_ad_token_provider=azure_ad_token_provider,
+ organization=organization,
+ )
+
+ def to_dict(self) -> Dict[str, Any]:
+ """
+ Serialize this component to a dictionary.
+ :return: The serialized component as a dictionary.
+ """
+ callback_name = serialize_callback_handler(self.streaming_callback) if self.streaming_callback else None
+ return default_to_dict(
+ self,
+ azure_endpoint=self.azure_endpoint,
+ azure_deployment=self.azure_deployment,
+ organization=self.organization,
+ api_version=self.api_version,
+ streaming_callback=callback_name,
+ generation_kwargs=self.generation_kwargs,
+ system_prompt=self.system_prompt,
+ )
+
+ @classmethod
+ def from_dict(cls, data: Dict[str, Any]) -> "AzureOpenAIGenerator":
+ """
+ Deserialize this component from a dictionary.
+ :param data: The dictionary representation of this component.
+ :return: The deserialized component instance.
+ """
+ init_params = data.get("init_parameters", {})
+ serialized_callback_handler = init_params.get("streaming_callback")
+ if serialized_callback_handler:
+ data["init_parameters"]["streaming_callback"] = deserialize_callback_handler(serialized_callback_handler)
+ return default_from_dict(cls, data)
diff --git a/haystack/components/generators/chat/__init__.py b/haystack/components/generators/chat/__init__.py
index 3227e50bfa..028389a568 100644
--- a/haystack/components/generators/chat/__init__.py
+++ b/haystack/components/generators/chat/__init__.py
@@ -1,4 +1,5 @@
from haystack.components.generators.chat.hugging_face_tgi import HuggingFaceTGIChatGenerator
from haystack.components.generators.chat.openai import OpenAIChatGenerator, GPTChatGenerator
+from haystack.components.generators.chat.azure import AzureOpenAIChatGenerator
-__all__ = ["HuggingFaceTGIChatGenerator", "OpenAIChatGenerator", "GPTChatGenerator"]
+__all__ = ["HuggingFaceTGIChatGenerator", "OpenAIChatGenerator", "GPTChatGenerator", "AzureOpenAIChatGenerator"]
diff --git a/haystack/components/generators/chat/azure.py b/haystack/components/generators/chat/azure.py
new file mode 100644
index 0000000000..7b1f4513f6
--- /dev/null
+++ b/haystack/components/generators/chat/azure.py
@@ -0,0 +1,161 @@
+import logging
+import os
+from typing import Optional, Callable, Dict, Any
+
+# pylint: disable=import-error
+from openai.lib.azure import AzureADTokenProvider, AzureOpenAI
+
+from haystack import default_to_dict, default_from_dict
+from haystack.components.generators.chat import OpenAIChatGenerator
+from haystack.components.generators.utils import serialize_callback_handler, deserialize_callback_handler
+from haystack.dataclasses import StreamingChunk
+
+logger = logging.getLogger(__name__)
+
+
+class AzureOpenAIChatGenerator(OpenAIChatGenerator):
+ """
+ Enables text generation using OpenAI's large language models (LLMs) on Azure. It supports gpt-4 and gpt-3.5-turbo
+ family of models accessed through the chat completions API endpoint.
+
+ Users can pass any text generation parameters valid for the `openai.ChatCompletion.create` method
+ directly to this component via the `**generation_kwargs` parameter in __init__ or the `**generation_kwargs`
+ parameter in `run` method.
+
+ For more details on OpenAI models deployed on Azure, refer to the Microsoft
+ [documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/).
+
+ ```python
+ from haystack.components.generators.chat import AzureOpenAIGenerator
+ from haystack.dataclasses import ChatMessage
+
+ messages = [ChatMessage.from_user("What's Natural Language Processing?")]
+
+ client = AzureOpenAIGenerator(azure_endpoint="",
+ api_key="",
+ azure_deployment="")
+ response = client.run(messages)
+ print(response)
+
+ >>{'replies': [ChatMessage(content='Natural Language Processing (NLP) is a branch of artificial intelligence
+ >>that focuses on enabling computers to understand, interpret, and generate human language in a way that is
+ >>meaningful and useful.', role=, name=None,
+ >>meta={'model': 'gpt-3.5-turbo-0613', 'index': 0, 'finish_reason': 'stop',
+ >>'usage': {'prompt_tokens': 15, 'completion_tokens': 36, 'total_tokens': 51}})]}
+
+ ```
+
+ Key Features and Compatibility:
+ - **Primary Compatibility**: Designed to work seamlessly with the OpenAI API Chat Completion endpoint
+ and gpt-4 and gpt-3.5-turbo family of models.
+ - **Streaming Support**: Supports streaming responses from the OpenAI API Chat Completion endpoint.
+ - **Customizability**: Supports all parameters supported by the OpenAI API Chat Completion endpoint.
+
+ Input and Output Format:
+ - **ChatMessage Format**: This component uses the ChatMessage format for structuring both input and output,
+ ensuring coherent and contextually relevant responses in chat-based text generation scenarios. Details on the
+ ChatMessage format can be found at: https://github.com/openai/openai-python/blob/main/chatml.md.
+ """
+
+ # pylint: disable=super-init-not-called
+ def __init__(
+ self,
+ azure_endpoint: Optional[str] = None,
+ api_version: Optional[str] = "2023-05-15",
+ azure_deployment: Optional[str] = "gpt-35-turbo",
+ api_key: Optional[str] = None,
+ azure_ad_token: Optional[str] = None,
+ azure_ad_token_provider: Optional[AzureADTokenProvider] = None,
+ organization: Optional[str] = None,
+ streaming_callback: Optional[Callable[[StreamingChunk], None]] = None,
+ generation_kwargs: Optional[Dict[str, Any]] = None,
+ ):
+ """
+ :param azure_endpoint: The endpoint of the deployed model, e.g. `https://example-resource.azure.openai.com/`
+ :param api_version: The version of the API to use. Defaults to 2023-05-15
+ :param azure_deployment: The deployment of the model, usually the model name.
+ :param api_key: The API key to use for authentication.
+ :param azure_ad_token: Azure Active Directory token, see https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id
+ :param azure_ad_token_provider: A function that returns an Azure Active Directory token, will be invoked
+ on every request.
+ :param organization: The Organization ID, defaults to `None`. See
+ [production best practices](https://platform.openai.com/docs/guides/production-best-practices/setting-up-your-organization).
+ :param streaming_callback: A callback function that is called when a new token is received from the stream.
+ The callback function accepts StreamingChunk as an argument.
+ :param generation_kwargs: Other parameters to use for the model. These parameters are all sent directly to
+ the OpenAI endpoint. See OpenAI [documentation](https://platform.openai.com/docs/api-reference/chat) for
+ more details.
+ Some of the supported parameters:
+ - `max_tokens`: The maximum number of tokens the output text can have.
+ - `temperature`: What sampling temperature to use. Higher values mean the model will take more risks.
+ Try 0.9 for more creative applications and 0 (argmax sampling) for ones with a well-defined answer.
+ - `top_p`: An alternative to sampling with temperature, called nucleus sampling, where the model
+ considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens
+ comprising the top 10% probability mass are considered.
+ - `n`: How many completions to generate for each prompt. For example, if the LLM gets 3 prompts and n is 2,
+ it will generate two completions for each of the three prompts, ending up with 6 completions in total.
+ - `stop`: One or more sequences after which the LLM should stop generating tokens.
+ - `presence_penalty`: What penalty to apply if a token is already present at all. Bigger values mean
+ the model will be less likely to repeat the same token in the text.
+ - `frequency_penalty`: What penalty to apply if a token has already been generated in the text.
+ Bigger values mean the model will be less likely to repeat the same token in the text.
+ - `logit_bias`: Add a logit bias to specific tokens. The keys of the dictionary are tokens, and the
+ values are the bias to add to that token.
+ """
+ # We intentionally do not call super().__init__ here because we only need to instantiate the client to interact
+ # with the API.
+
+ # Why is this here?
+ # AzureOpenAI init is forcing us to use an init method that takes either base_url or azure_endpoint as not
+ # None init parameters. This way we accommodate the use case where env var AZURE_OPENAI_ENDPOINT is set instead
+ # of passing it as a parameter.
+ azure_endpoint = azure_endpoint or os.environ.get("AZURE_OPENAI_ENDPOINT")
+ if not azure_endpoint:
+ raise ValueError("Please provide an Azure endpoint or set the environment variable AZURE_OPENAI_ENDPOINT.")
+
+ self.generation_kwargs = generation_kwargs or {}
+ self.streaming_callback = streaming_callback
+ self.api_version = api_version
+ self.azure_endpoint = azure_endpoint
+ self.azure_deployment = azure_deployment
+ self.organization = organization
+ self.model_name = azure_deployment or "gpt-35-turbo"
+
+ self.client = AzureOpenAI(
+ api_version=api_version,
+ azure_endpoint=azure_endpoint,
+ azure_deployment=azure_deployment,
+ api_key=api_key,
+ azure_ad_token=azure_ad_token,
+ azure_ad_token_provider=azure_ad_token_provider,
+ organization=organization,
+ )
+
+ def to_dict(self) -> Dict[str, Any]:
+ """
+ Serialize this component to a dictionary.
+ :return: The serialized component as a dictionary.
+ """
+ callback_name = serialize_callback_handler(self.streaming_callback) if self.streaming_callback else None
+ return default_to_dict(
+ self,
+ azure_endpoint=self.azure_endpoint,
+ azure_deployment=self.azure_deployment,
+ organization=self.organization,
+ api_version=self.api_version,
+ streaming_callback=callback_name,
+ generation_kwargs=self.generation_kwargs,
+ )
+
+ @classmethod
+ def from_dict(cls, data: Dict[str, Any]) -> "AzureOpenAIChatGenerator":
+ """
+ Deserialize this component from a dictionary.
+ :param data: The dictionary representation of this component.
+ :return: The deserialized component instance.
+ """
+ init_params = data.get("init_parameters", {})
+ serialized_callback_handler = init_params.get("streaming_callback")
+ if serialized_callback_handler:
+ data["init_parameters"]["streaming_callback"] = deserialize_callback_handler(serialized_callback_handler)
+ return default_from_dict(cls, data)
diff --git a/releasenotes/notes/add-azure-generators-a30c786204b22e48.yaml b/releasenotes/notes/add-azure-generators-a30c786204b22e48.yaml
new file mode 100644
index 0000000000..2a3422cfeb
--- /dev/null
+++ b/releasenotes/notes/add-azure-generators-a30c786204b22e48.yaml
@@ -0,0 +1,4 @@
+---
+features:
+ - |
+ Adds support for Azure OpenAI models with AzureOpenAIGenerator and AzureOpenAIChatGenerator components.
diff --git a/test/components/generators/chat/test_azure.py b/test/components/generators/chat/test_azure.py
new file mode 100644
index 0000000000..2a9f900f7d
--- /dev/null
+++ b/test/components/generators/chat/test_azure.py
@@ -0,0 +1,89 @@
+import os
+
+import pytest
+from openai import OpenAIError
+
+from haystack.components.generators.chat import AzureOpenAIChatGenerator
+from haystack.components.generators.utils import default_streaming_callback
+from haystack.dataclasses import ChatMessage
+
+
+class TestOpenAIChatGenerator:
+ def test_init_default(self):
+ component = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint", api_key="test-api-key")
+ assert component.client.api_key == "test-api-key"
+ assert component.azure_deployment == "gpt-35-turbo"
+ assert component.streaming_callback is None
+ assert not component.generation_kwargs
+
+ def test_init_fail_wo_api_key(self, monkeypatch):
+ monkeypatch.delenv("AZURE_OPENAI_API_KEY", raising=False)
+ with pytest.raises(OpenAIError):
+ AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint")
+
+ def test_init_with_parameters(self):
+ component = AzureOpenAIChatGenerator(
+ azure_endpoint="some-non-existing-endpoint",
+ api_key="test-api-key",
+ streaming_callback=default_streaming_callback,
+ generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
+ )
+ assert component.client.api_key == "test-api-key"
+ assert component.azure_deployment == "gpt-35-turbo"
+ assert component.streaming_callback is default_streaming_callback
+ assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
+
+ def test_to_dict_default(self):
+ component = AzureOpenAIChatGenerator(api_key="test-api-key", azure_endpoint="some-non-existing-endpoint")
+ data = component.to_dict()
+ assert data == {
+ "type": "haystack.components.generators.chat.azure.AzureOpenAIChatGenerator",
+ "init_parameters": {
+ "api_version": "2023-05-15",
+ "azure_endpoint": "some-non-existing-endpoint",
+ "azure_deployment": "gpt-35-turbo",
+ "organization": None,
+ "streaming_callback": None,
+ "generation_kwargs": {},
+ },
+ }
+
+ def test_to_dict_with_parameters(self):
+ component = AzureOpenAIChatGenerator(
+ api_key="test-api-key",
+ azure_endpoint="some-non-existing-endpoint",
+ generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
+ )
+ data = component.to_dict()
+ assert data == {
+ "type": "haystack.components.generators.chat.azure.AzureOpenAIChatGenerator",
+ "init_parameters": {
+ "api_version": "2023-05-15",
+ "azure_endpoint": "some-non-existing-endpoint",
+ "azure_deployment": "gpt-35-turbo",
+ "organization": None,
+ "streaming_callback": None,
+ "generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
+ },
+ }
+
+ @pytest.mark.integration
+ @pytest.mark.skipif(
+ not os.environ.get("AZURE_OPENAI_API_KEY", None) and not os.environ.get("AZURE_OPENAI_ENDPOINT", None),
+ reason=(
+ "Please export env variables called AZURE_OPENAI_API_KEY containing "
+ "the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing "
+ "the Azure OpenAI endpoint URL to run this test."
+ ),
+ )
+ def test_live_run(self):
+ chat_messages = [ChatMessage.from_user("What's the capital of France")]
+ component = AzureOpenAIChatGenerator(organization="HaystackCI")
+ results = component.run(chat_messages)
+ assert len(results["replies"]) == 1
+ message: ChatMessage = results["replies"][0]
+ assert "Paris" in message.content
+ assert "gpt-35-turbo" in message.meta["model"]
+ assert message.meta["finish_reason"] == "stop"
+
+ # additional tests intentionally omitted as they are covered by test_openai.py
diff --git a/test/components/generators/test_azure.py b/test/components/generators/test_azure.py
new file mode 100644
index 0000000000..816afb9a51
--- /dev/null
+++ b/test/components/generators/test_azure.py
@@ -0,0 +1,99 @@
+import os
+
+import pytest
+from openai import OpenAIError
+
+from haystack.components.generators import AzureOpenAIGenerator
+from haystack.components.generators.utils import default_streaming_callback
+
+
+class TestAzureOpenAIGenerator:
+ def test_init_default(self):
+ component = AzureOpenAIGenerator(api_key="test-api-key", azure_endpoint="some-non-existing-endpoint")
+ assert component.client.api_key == "test-api-key"
+ assert component.azure_deployment == "gpt-35-turbo"
+ assert component.streaming_callback is None
+ assert not component.generation_kwargs
+
+ def test_init_fail_wo_api_key(self, monkeypatch):
+ monkeypatch.delenv("AZURE_OPENAI_API_KEY", raising=False)
+ with pytest.raises(OpenAIError):
+ AzureOpenAIGenerator(azure_endpoint="some-non-existing-endpoint")
+
+ def test_init_with_parameters(self):
+ component = AzureOpenAIGenerator(
+ api_key="test-api-key",
+ azure_endpoint="some-non-existing-endpoint",
+ azure_deployment="gpt-35-turbo",
+ streaming_callback=default_streaming_callback,
+ generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
+ )
+ assert component.client.api_key == "test-api-key"
+ assert component.azure_deployment == "gpt-35-turbo"
+ assert component.streaming_callback is default_streaming_callback
+ assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
+
+ def test_to_dict_default(self):
+ component = AzureOpenAIGenerator(api_key="test-api-key", azure_endpoint="some-non-existing-endpoint")
+ data = component.to_dict()
+ assert data == {
+ "type": "haystack.components.generators.azure.AzureOpenAIGenerator",
+ "init_parameters": {
+ "azure_deployment": "gpt-35-turbo",
+ "api_version": "2023-05-15",
+ "streaming_callback": None,
+ "azure_endpoint": "some-non-existing-endpoint",
+ "organization": None,
+ "system_prompt": None,
+ "generation_kwargs": {},
+ },
+ }
+
+ def test_to_dict_with_parameters(self):
+ component = AzureOpenAIGenerator(
+ api_key="test-api-key",
+ azure_endpoint="some-non-existing-endpoint",
+ generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
+ )
+
+ data = component.to_dict()
+ assert data == {
+ "type": "haystack.components.generators.azure.AzureOpenAIGenerator",
+ "init_parameters": {
+ "azure_deployment": "gpt-35-turbo",
+ "api_version": "2023-05-15",
+ "streaming_callback": None,
+ "azure_endpoint": "some-non-existing-endpoint",
+ "organization": None,
+ "system_prompt": None,
+ "generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
+ },
+ }
+
+ @pytest.mark.integration
+ @pytest.mark.skipif(
+ not os.environ.get("AZURE_OPENAI_API_KEY", None) and not os.environ.get("AZURE_OPENAI_ENDPOINT", None),
+ reason=(
+ "Please export env variables called AZURE_OPENAI_API_KEY containing "
+ "the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing "
+ "the Azure OpenAI endpoint URL to run this test."
+ ),
+ )
+ def test_live_run(self):
+ component = AzureOpenAIGenerator(organization="HaystackCI")
+ results = component.run("What's the capital of France?")
+ assert len(results["replies"]) == 1
+ assert len(results["meta"]) == 1
+ response: str = results["replies"][0]
+ assert "Paris" in response
+
+ metadata = results["meta"][0]
+ assert "gpt-35-turbo" in metadata["model"]
+ assert metadata["finish_reason"] == "stop"
+
+ assert "usage" in metadata
+ assert "prompt_tokens" in metadata["usage"] and metadata["usage"]["prompt_tokens"] > 0
+ assert "completion_tokens" in metadata["usage"] and metadata["usage"]["completion_tokens"] > 0
+ assert "total_tokens" in metadata["usage"] and metadata["usage"]["total_tokens"] > 0
+
+ # additional tests intentionally omitted as they are covered by test_openai.py