-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathmodel.py
301 lines (237 loc) · 9.59 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import nn
import utils
import torch
from torch.nn import functional as F
from torch.nn import init
import numpy as np
class SampleRNN(torch.nn.Module):
def __init__(self, frame_sizes, n_rnn, dim, learn_h0, q_levels,
weight_norm):
super().__init__()
self.dim = dim
self.q_levels = q_levels
ns_frame_samples = map(int, np.cumprod(frame_sizes))
self.frame_level_rnns = torch.nn.ModuleList([
FrameLevelRNN(
frame_size, n_frame_samples, n_rnn, dim, learn_h0, weight_norm
)
for (frame_size, n_frame_samples) in zip(
frame_sizes, ns_frame_samples
)
])
self.sample_level_mlp = SampleLevelMLP(
frame_sizes[0], dim, q_levels, weight_norm
)
@property
def lookback(self):
return self.frame_level_rnns[-1].n_frame_samples
class FrameLevelRNN(torch.nn.Module):
def __init__(self, frame_size, n_frame_samples, n_rnn, dim,
learn_h0, weight_norm):
super().__init__()
self.frame_size = frame_size
self.n_frame_samples = n_frame_samples
self.dim = dim
h0 = torch.zeros(n_rnn, dim)
if learn_h0:
self.h0 = torch.nn.Parameter(h0)
else:
self.register_buffer('h0', torch.autograd.Variable(h0))
self.input_expand = torch.nn.Conv1d(
in_channels=n_frame_samples,
out_channels=dim,
kernel_size=1
)
init.kaiming_uniform(self.input_expand.weight)
init.constant(self.input_expand.bias, 0)
if weight_norm:
self.input_expand = torch.nn.utils.weight_norm(self.input_expand)
self.rnn = torch.nn.GRU(
input_size=dim,
hidden_size=dim,
num_layers=n_rnn,
batch_first=True
)
for i in range(n_rnn):
nn.concat_init(
getattr(self.rnn, 'weight_ih_l{}'.format(i)),
[nn.lecun_uniform, nn.lecun_uniform, nn.lecun_uniform]
)
init.constant(getattr(self.rnn, 'bias_ih_l{}'.format(i)), 0)
nn.concat_init(
getattr(self.rnn, 'weight_hh_l{}'.format(i)),
[nn.lecun_uniform, nn.lecun_uniform, init.orthogonal]
)
init.constant(getattr(self.rnn, 'bias_hh_l{}'.format(i)), 0)
self.upsampling = nn.LearnedUpsampling1d(
in_channels=dim,
out_channels=dim,
kernel_size=frame_size
)
init.uniform(
self.upsampling.conv_t.weight, -np.sqrt(6 / dim), np.sqrt(6 / dim)
)
init.constant(self.upsampling.bias, 0)
if weight_norm:
self.upsampling.conv_t = torch.nn.utils.weight_norm(
self.upsampling.conv_t
)
def forward(self, prev_samples, upper_tier_conditioning, hidden):
(batch_size, _, _) = prev_samples.size()
input = self.input_expand(
prev_samples.permute(0, 2, 1)
).permute(0, 2, 1)
if upper_tier_conditioning is not None:
input += upper_tier_conditioning
reset = hidden is None
if hidden is None:
(n_rnn, _) = self.h0.size()
hidden = self.h0.unsqueeze(1) \
.expand(n_rnn, batch_size, self.dim) \
.contiguous()
(output, hidden) = self.rnn(input, hidden)
output = self.upsampling(
output.permute(0, 2, 1)
).permute(0, 2, 1)
return (output, hidden)
class SampleLevelMLP(torch.nn.Module):
def __init__(self, frame_size, dim, q_levels, weight_norm):
super().__init__()
self.q_levels = q_levels
self.embedding = torch.nn.Embedding(
self.q_levels,
self.q_levels
)
self.input = torch.nn.Conv1d(
in_channels=q_levels,
out_channels=dim,
kernel_size=frame_size,
bias=False
)
init.kaiming_uniform(self.input.weight)
if weight_norm:
self.input = torch.nn.utils.weight_norm(self.input)
self.hidden = torch.nn.Conv1d(
in_channels=dim,
out_channels=dim,
kernel_size=1
)
init.kaiming_uniform(self.hidden.weight)
init.constant(self.hidden.bias, 0)
if weight_norm:
self.hidden = torch.nn.utils.weight_norm(self.hidden)
self.output = torch.nn.Conv1d(
in_channels=dim,
out_channels=q_levels,
kernel_size=1
)
nn.lecun_uniform(self.output.weight)
init.constant(self.output.bias, 0)
if weight_norm:
self.output = torch.nn.utils.weight_norm(self.output)
def forward(self, prev_samples, upper_tier_conditioning):
(batch_size, _, _) = upper_tier_conditioning.size()
prev_samples = self.embedding(
prev_samples.contiguous().view(-1)
).view(
batch_size, -1, self.q_levels
)
prev_samples = prev_samples.permute(0, 2, 1)
upper_tier_conditioning = upper_tier_conditioning.permute(0, 2, 1)
x = F.relu(self.input(prev_samples) + upper_tier_conditioning)
x = F.relu(self.hidden(x))
x = self.output(x).permute(0, 2, 1).contiguous()
return F.log_softmax(x.view(-1, self.q_levels)) \
.view(batch_size, -1, self.q_levels)
class Runner:
def __init__(self, model):
super().__init__()
self.model = model
self.reset_hidden_states()
def reset_hidden_states(self):
self.hidden_states = {rnn: None for rnn in self.model.frame_level_rnns}
def run_rnn(self, rnn, prev_samples, upper_tier_conditioning):
(output, new_hidden) = rnn(
prev_samples, upper_tier_conditioning, self.hidden_states[rnn]
)
self.hidden_states[rnn] = new_hidden.detach()
return output
class Predictor(Runner, torch.nn.Module):
def __init__(self, model):
super().__init__(model)
def forward(self, input_sequences, reset):
if reset:
self.reset_hidden_states()
(batch_size, _) = input_sequences.size()
upper_tier_conditioning = None
for rnn in reversed(self.model.frame_level_rnns):
from_index = self.model.lookback - rnn.n_frame_samples
to_index = -rnn.n_frame_samples + 1
prev_samples = 2 * utils.linear_dequantize(
input_sequences[:, from_index : to_index],
self.model.q_levels
)
prev_samples = prev_samples.contiguous().view(
batch_size, -1, rnn.n_frame_samples
)
upper_tier_conditioning = self.run_rnn(
rnn, prev_samples, upper_tier_conditioning
)
bottom_frame_size = self.model.frame_level_rnns[0].frame_size
mlp_input_sequences = input_sequences \
[:, self.model.lookback - bottom_frame_size :]
return self.model.sample_level_mlp(
mlp_input_sequences, upper_tier_conditioning
)
class Generator(Runner):
def __init__(self, model, cuda=False):
super().__init__(model)
self.cuda = cuda
def __call__(self, n_seqs, seq_len):
# generation doesn't work with CUDNN for some reason
torch.backends.cudnn.enabled = False
self.reset_hidden_states()
bottom_frame_size = self.model.frame_level_rnns[0].n_frame_samples
sequences = torch.LongTensor(n_seqs, self.model.lookback + seq_len) \
.fill_(utils.q_zero(self.model.q_levels))
frame_level_outputs = [None for _ in self.model.frame_level_rnns]
for i in range(self.model.lookback, self.model.lookback + seq_len):
for (tier_index, rnn) in \
reversed(list(enumerate(self.model.frame_level_rnns))):
if i % rnn.n_frame_samples != 0:
continue
prev_samples = torch.autograd.Variable(
2 * utils.linear_dequantize(
sequences[:, i - rnn.n_frame_samples : i],
self.model.q_levels
).unsqueeze(1),
volatile=True
)
if self.cuda:
prev_samples = prev_samples.cuda()
if tier_index == len(self.model.frame_level_rnns) - 1:
upper_tier_conditioning = None
else:
frame_index = (i // rnn.n_frame_samples) % \
self.model.frame_level_rnns[tier_index + 1].frame_size
upper_tier_conditioning = \
frame_level_outputs[tier_index + 1][:, frame_index, :] \
.unsqueeze(1)
frame_level_outputs[tier_index] = self.run_rnn(
rnn, prev_samples, upper_tier_conditioning
)
prev_samples = torch.autograd.Variable(
sequences[:, i - bottom_frame_size : i],
volatile=True
)
if self.cuda:
prev_samples = prev_samples.cuda()
upper_tier_conditioning = \
frame_level_outputs[0][:, i % bottom_frame_size, :] \
.unsqueeze(1)
sample_dist = self.model.sample_level_mlp(
prev_samples, upper_tier_conditioning
).squeeze(1).exp_().data
sequences[:, i] = sample_dist.multinomial(1).squeeze(1)
torch.backends.cudnn.enabled = True
return sequences[:, self.model.lookback :]