Skip to content

Latest commit

 

History

History
207 lines (165 loc) · 16.9 KB

README.md

File metadata and controls

207 lines (165 loc) · 16.9 KB

deit3-jax

Introduction

This project aims to re-implement DeiT and DeiT-III using Jax/Flax and running on TPUs. Given that the original repository is written in PyTorch, this project provides an alternative codebase for training a variant of ViT on TPUs.

Pretrained Checkpoints

We have trained ViTs using both DeiT and DeiT-III recipes. All experiments were done on a v4-64 pod slice, and you can see the training details in the wandb logs.

DeiT Reproduction

Name Data Resolution Epochs Time Reimpl. Original Config Wandb Model
T/16 in1k 224 300 2h 40m 73.1% 72.2% config log ckpt
S/16 in1k 224 300 2h 43m 79.68% 79.8% config log ckpt
B/16 in1k 224 300 4h 40m 81.46% 81.8% config log ckpt

DeiT-III on ImageNet-1k

Name Data Resolution Epochs Time Reimpl. Original Config Wandb Model
S/16 in1k 224 400 2h 38m 80.7% 80.4% config log ckpt
S/16 in1k 224 800 5h 19m 81.44% 81.4% config log ckpt
B/16 in1k 192 → 224 400 4h 42m 83.6% 83.5% pt / ft pt / ft pt / ft
B/16 in1k 192 → 224 800 9h 28m 83.91% 83.8% pt / ft pt / ft pt / ft
L/16 in1k 192 → 224 400 14h 10m 84.62% 84.5% pt / ft pt / ft pt / ft
L/16 in1k 192 → 224 800 - - 84.9% pt / ft - -
H/14 in1k 154 → 224 400 19h 10m 85.12% 85.1% pt / ft pt / ft pt / ft
H/14 in1k 154 → 224 800 - - 85.2% pt / ft - -

DeiT-III on ImageNet-21k

Name Data Resolution Epochs Time Reimpl. Original Config Wandb Model
S/16 in21k 224 90 7h 30m 83.04% 82.6% pt / ft pt / ft pt / ft
S/16 in21k 224 240 20h 6m 83.39% 83.1% pt / ft pt / ft pt / ft
B/16 in21k 224 90 12h 12m 85.35% 85.2% pt / ft pt / ft pt / ft
B/16 in21k 224 240 33h 9m 85.68% 85.7% pt / ft pt / ft pt / ft
L/16 in21k 224 90 37h 13m 86.83% 86.8% pt / ft pt / ft pt / ft
L/16 in21k 224 240 - - 87% pt / ft - -
H/14 in21k 126 → 224 90 35h 51m 86.78% 87.2% pt / ft pt / ft pt / ft
H/14 in21k 126 → 224 240 - - - pt / ft - -

Getting Started

Environment Setup

To begin, create a TPU instance for training ViTs. We have tested on both v3-8 and v4-64. We recommend using the v4-64 pod slice. If you do not have any TPU quota, visit this link and apply for the TRC program.

$ gcloud compute tpus tpu-vm create tpu-name \
    --zone=us-central2-b \
    --accelerator-type=v4-64 \
    --version=tpu-ubuntu2204-base 

Once the TPU instance is created, clone this repository and install the required dependencies. All dependencies and installation steps are sepcified in the scripts/setup.sh file. Note that you should use the gcloud command to execute the same command on all nodes simultaneously. The v4-64 pod slice contains 8 computing nodes, each with 4 v4 chips.

$ gcloud compute tpus tpu-vm ssh tpu-name \
    --zone=us-central2-b \
    --worker=all \
    --command="git clone https://github.com/affjljoo3581/deit3-jax"
$ gcloud compute tpus tpu-vm ssh tpu-name \
    --zone=us-central2-b \
    --worker=all \
    --command="bash deit3-jax/scripts/setup.sh"

Additionally, log in to your wandb account using the command below. Replace $WANDB_API_KEY with your own API key.

$ gcloud compute tpus tpu-vm ssh tpu-name \
    --zone=us-central2-b \
    --worker=all \
    --command="source ~/miniconda3/bin/activate base; wandb login $WANDB_API_KEY"

Prepare Dataset Shards

deit3-jax utilizes webdataset to load training samples from various sources, such as huggingface hub and GCS. Timm provides webdataset versions of ImageNet-1k and ImageNet-21k on the huggingface hub. We recommend copying the resources to your GCS bucket for faster download speeds. To download both datasets to your bucket, use the following command:

$ export HF_TOKEN=...
$ export GCS_DATASET_DIR=gs://...

$ bash scripts/prepare-imagenet1k-dataset.sh
$ bash scripts/prepare-imagenet21k-dataset.sh

For example, you can list the tarfiles in your bucket like this:

$ gsutil ls gs://affjljoo3581-tpu-v4-storage/datasets/imagenet-1k-wds/
gs://affjljoo3581-tpu-v4-storage/datasets/imagenet-1k-wds/imagenet1k-train-0000.tar
gs://affjljoo3581-tpu-v4-storage/datasets/imagenet-1k-wds/imagenet1k-train-0001.tar
gs://affjljoo3581-tpu-v4-storage/datasets/imagenet-1k-wds/imagenet1k-train-0002.tar
gs://affjljoo3581-tpu-v4-storage/datasets/imagenet-1k-wds/imagenet1k-train-0003.tar
gs://affjljoo3581-tpu-v4-storage/datasets/imagenet-1k-wds/imagenet1k-train-0004.tar
...

However, GCS is not the only way to use webdataset. Instead of prefetching into your own bucket, it is also possible to directly stream from the huggingface hub while training.

$ export TRAIN_SHARDS=https://huggingface.co/datasets/timm/imagenet-1k-wds/resolve/main/imagenet1k-train-{0000..1023}.tar
$ export VALID_SHARDS=https://huggingface.co/datasets/timm/imagenet-1k-wds/resolve/main/imagenet1k-validation-{00..63}.tar

$ python3 src/main.py \
    --train-dataset-shards "pipe:curl -s -L $TRAIN_SHARDS -H 'Authorization:Bearer $HF_TOKEN'" \
    --valid-dataset-shards "pipe:curl -s -L $VALID_SHARDS -H 'Authorization:Bearer $HF_TOKEN'" \
    ...

Since intermittent decreases in download performance may occur when streaming from the huggingface hub, we recommend using the GCS bucket for stable download speed and consistent training.

Train ViTs

You can now train your ViTs using the command below. Replace $CONFIG_FILE with the path to the configuration file you want to use. Instead, you can customize your own training recipes by adjusting the hyperparameters. The various training presets are available in the config folder.

$ export GCS_MODEL_DIR=gs://...

$ gcloud compute tpus tpu-vm ssh tpu-name \
    --zone=us-central2-b \
    --worker=all \
    --command="source ~/miniconda3/bin/activate base; cd deit3-jax; screen -dmL bash $CONFIG_FILE"

The training results will be saved to $GCS_MODEL_DIR. You can specify a local directory path instead of a GCS path to save models locally.

Convert Checkpoints to Timm

To use the pretrained checkpoints, you can convert .msgpack to timm-compatible .pth files.

$ python scripts/convert_flax_to_pytorch.py deit3-s16-224-in1k-400ep-best.msgpack
$ ls
deit3-s16-224-in1k-400ep-best.msgpack  deit3-s16-224-in1k-400ep-best.pth

After converting .msgpack to .pth, you can load it with timm:

>>> import torch
>>> import timm
>>> model = timm.create_model("vit_small_patch16_224", init_values=1e-4)
>>> model.load_state_dict(torch.load("deit3-s16-224-in1k-400ep-best.pth"))
<All keys matched successfully>

Hyperparameters

Image Augmentations

  • --random-crop: Type of random cropping. Choose none for nothing, rrc for RandomResizedCrop, and src for SimpleResizedCrop proposed in DeiT-III.
  • --color-jitter: Factor for color jitter augmentation.
  • --auto-augment: Name of auto-augment policy used in Timm (e.g. rand-m9-mstd0.5-inc1).
  • --random-erasing: Probability of random erasing augmentation.
  • --augment-repeats: Number of augmentation repetitions.
  • --test-crop-ratio: Center crop ratio for test preprocessing.
  • --mixup: Factor (alpha) for Mixup augmentation. Disable by setting to 0.
  • --cutmix: Factor (alpha) for CutMix augmentation. Disable by setting to 0.
  • --criterion: Type of classification loss. Choose ce for softmax cross entropy and bce for sigmoid cross entropy.
  • --label-smoothing: Factor for label smoothing.

ViT Architecture

  • --layers: Number of layers.
  • --dim: Number of hidden features.
  • --heads: Number of attention heads.
  • --labels: Number of classification labels.
  • --layerscale: Flag to enable LayerScale.
  • --patch-size: Patch size in ViT embedding layer.
  • --image-size: Input image size.
  • --posemb: Type of positional embeddings in ViT. Choose learnable for learnable parameters and sincos2d for sinusoidal encoding.
  • --pooling: Type of pooling strategy. Choose cls for using [CLS] token and gap for global average pooling.
  • --dropout: Dropout rate.
  • --droppath: DropPath rate.
  • --grad-ckpt: Flag to enable gradient checkpointing for reducing memory footprint.

Optimization

  • --optimizer: Type of optimizer. Choose adamw for AdamW and lamb for LAMB.
  • --learning-rate: Peak learning rate.
  • --weight-decay: Decoupled weight decay rate.
  • --adam-b1: Adam beta1.
  • --adam-b2: Adam beta2.
  • --adam-eps: Adam epsilon.
  • --lr-decay: Layerwise learning rate decay rate.
  • --clip-grad: Maximum gradient norm.
  • --grad-accum: Number of gradient accumulation steps.
  • --warmup-steps: Number of learning rate warmup steps.
  • --training-steps: Number of total training steps.
  • --log-interval: Number of logging intervals.
  • --eval-interval: Number of evaluation intervals.

Random Seeds

  • --init-seed: Random seed for weight initialization.
  • --mixup-seed: Random seed for Mixup and CutMix augmentations.
  • --dropout-seed: Random seed for Dropout regularization.
  • --shuffle-seed: Random seed for dataset shuffling.
  • --pretrained-ckpt: Pretrained model path to load from.
  • --label-mapping: Label mapping file to reuse the pretrained classification head for transfer learning.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Acknowledgement

Thanks to the TPU Research Cloud program for providing resources. All models are trained on the TPU v4-64 pod slice.