Skip to content

Commit

Permalink
[FIX] Additional metrics during training (automl#316)
Browse files Browse the repository at this point in the history
* additional_metrics during training

* fix flake

* Add test for unsupported budget type

* Apply suggestions from code review

Co-authored-by: nabenabe0928 <[email protected]>

Co-authored-by: nabenabe0928 <[email protected]>
  • Loading branch information
ravinkohli and nabenabe0928 authored Nov 12, 2021
1 parent f089845 commit 9559849
Show file tree
Hide file tree
Showing 3 changed files with 123 additions and 21 deletions.
80 changes: 59 additions & 21 deletions autoPyTorch/evaluation/abstract_evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -490,37 +490,23 @@ def __init__(self, backend: Backend,
))

self.additional_metrics: Optional[List[autoPyTorchMetric]] = None
metrics_dict: Optional[Dict[str, List[str]]] = None
if all_supported_metrics:
self.additional_metrics = get_metrics(dataset_properties=self.dataset_properties,
all_supported_metrics=all_supported_metrics)
# Update fit dictionary with metrics passed to the evaluator
metrics_dict = {'additional_metrics': []}
metrics_dict['additional_metrics'].append(self.metric.name)
for metric in self.additional_metrics:
metrics_dict['additional_metrics'].append(metric.name)

self.fit_dictionary: Dict[str, Any] = {'dataset_properties': self.dataset_properties}
self._init_params = init_params
self.fit_dictionary.update({
'X_train': self.X_train,
'y_train': self.y_train,
'X_test': self.X_test,
'y_test': self.y_test,
'backend': self.backend,
'logger_port': logger_port,
'optimize_metric': self.metric.name
})

assert self.pipeline_class is not None, "Could not infer pipeline class"
pipeline_config = pipeline_config if pipeline_config is not None \
else self.pipeline_class.get_default_pipeline_options()
self.budget_type = pipeline_config['budget_type'] if budget_type is None else budget_type
self.budget = pipeline_config[self.budget_type] if budget == 0 else budget
self.fit_dictionary = {**pipeline_config, **self.fit_dictionary}

# If the budget is epochs, we want to limit that in the fit dictionary
if self.budget_type == 'epochs':
self.fit_dictionary['epochs'] = budget
self.fit_dictionary.pop('runtime', None)
elif self.budget_type == 'runtime':
self.fit_dictionary['runtime'] = budget
self.fit_dictionary.pop('epochs', None)
else:
raise ValueError(f"Unsupported budget type {self.budget_type} provided")

self.num_run = 0 if num_run is None else num_run

Expand All @@ -533,13 +519,65 @@ def __init__(self, backend: Backend,
port=logger_port,
)

self._init_fit_dictionary(logger_port=logger_port, pipeline_config=pipeline_config, metrics_dict=metrics_dict)
self.Y_optimization: Optional[np.ndarray] = None
self.Y_actual_train: Optional[np.ndarray] = None
self.pipelines: Optional[List[BaseEstimator]] = None
self.pipeline: Optional[BaseEstimator] = None
self.logger.debug("Fit dictionary in Abstract evaluator: {}".format(dict_repr(self.fit_dictionary)))
self.logger.debug("Search space updates :{}".format(self.search_space_updates))

def _init_fit_dictionary(
self,
logger_port: int,
pipeline_config: Dict[str, Any],
metrics_dict: Optional[Dict[str, List[str]]] = None,
) -> None:
"""
Initialises the fit dictionary
Args:
logger_port (int):
Logging is performed using a socket-server scheme to be robust against many
parallel entities that want to write to the same file. This integer states the
socket port for the communication channel.
pipeline_config (Dict[str, Any]):
Defines the content of the pipeline being evaluated. For example, it
contains pipeline specific settings like logging name, or whether or not
to use tensorboard.
metrics_dict (Optional[Dict[str, List[str]]]):
Contains a list of metric names to be evaluated in Trainer with key `additional_metrics`. Defaults to None.
Returns:
None
"""

self.fit_dictionary: Dict[str, Any] = {'dataset_properties': self.dataset_properties}

if metrics_dict is not None:
self.fit_dictionary.update(metrics_dict)

self.fit_dictionary.update({
'X_train': self.X_train,
'y_train': self.y_train,
'X_test': self.X_test,
'y_test': self.y_test,
'backend': self.backend,
'logger_port': logger_port,
'optimize_metric': self.metric.name
})

self.fit_dictionary.update(pipeline_config)
# If the budget is epochs, we want to limit that in the fit dictionary
if self.budget_type == 'epochs':
self.fit_dictionary['epochs'] = self.budget
self.fit_dictionary.pop('runtime', None)
elif self.budget_type == 'runtime':
self.fit_dictionary['runtime'] = self.budget
self.fit_dictionary.pop('epochs', None)
else:
raise ValueError(f"budget type must be `epochs` or `runtime`, but got {self.budget_type}")

def _get_pipeline(self) -> BaseEstimator:
"""
Implements a pipeline object based on the self.configuration attribute.
Expand Down
32 changes: 32 additions & 0 deletions test/test_evaluation/test_abstract_evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -282,3 +282,35 @@ def test_file_output(self):
'.autoPyTorch', 'runs', '1_0_1.0')))

shutil.rmtree(self.working_directory, ignore_errors=True)

def test_error_unsupported_budget_type(self):
shutil.rmtree(self.working_directory, ignore_errors=True)
os.mkdir(self.working_directory)

queue_mock = unittest.mock.Mock()

context = BackendContext(
prefix='autoPyTorch',
temporary_directory=os.path.join(self.working_directory, 'tmp'),
output_directory=os.path.join(self.working_directory, 'out'),
delete_tmp_folder_after_terminate=True,
delete_output_folder_after_terminate=True,
)
with unittest.mock.patch.object(Backend, 'load_datamanager') as load_datamanager_mock:
load_datamanager_mock.return_value = get_multiclass_classification_datamanager()

backend = Backend(context, prefix='autoPyTorch')

try:
AbstractEvaluator(
backend=backend,
output_y_hat_optimization=False,
queue=queue_mock,
pipeline_config={'budget_type': "error", 'error': 0},
metric=accuracy,
budget=0,
configuration=1)
except Exception as e:
self.assertIsInstance(e, ValueError)

shutil.rmtree(self.working_directory, ignore_errors=True)
32 changes: 32 additions & 0 deletions test/test_evaluation/test_train_evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -262,3 +262,35 @@ def test_get_results(self):
self.assertEqual(len(result), 5)
self.assertEqual(result[0][0], 0)
self.assertAlmostEqual(result[0][1], 1.0)

@unittest.mock.patch('autoPyTorch.pipeline.tabular_classification.TabularClassificationPipeline')
def test_additional_metrics_during_training(self, pipeline_mock):
pipeline_mock.fit_dictionary = {'budget_type': 'epochs', 'epochs': 50}
# Binary iris, contains 69 train samples, 31 test samples
D = get_binary_classification_datamanager()
pipeline_mock.predict_proba.side_effect = \
lambda X, batch_size=None: np.tile([0.6, 0.4], (len(X), 1))
pipeline_mock.side_effect = lambda **kwargs: pipeline_mock
pipeline_mock.get_additional_run_info.return_value = None

# Binary iris, contains 69 train samples, 31 test samples
D = get_binary_classification_datamanager()

configuration = unittest.mock.Mock(spec=Configuration)
backend_api = create(self.tmp_dir, self.output_dir, prefix='autoPyTorch')
backend_api.load_datamanager = lambda: D
queue_ = multiprocessing.Queue()

evaluator = TrainEvaluator(backend_api, queue_, configuration=configuration, metric=accuracy, budget=0,
pipeline_config={'budget_type': 'epochs', 'epochs': 50}, all_supported_metrics=True)
evaluator.file_output = unittest.mock.Mock(spec=evaluator.file_output)
evaluator.file_output.return_value = (None, {})

evaluator.fit_predict_and_loss()

rval = read_queue(evaluator.queue)
self.assertEqual(len(rval), 1)
result = rval[0]
self.assertIn('additional_run_info', result)
self.assertIn('opt_loss', result['additional_run_info'])
self.assertGreater(len(result['additional_run_info']['opt_loss'].keys()), 1)

0 comments on commit 9559849

Please sign in to comment.