-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspacex_dash_app.py
102 lines (88 loc) · 5.42 KB
/
spacex_dash_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Create a dash application
# Import required libraries
import pandas as pd
import dash
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output
import plotly.express as px
# download this in terminal
# wget "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/spacex_launch_dash.csv"
# Read the airline data into pandas dataframe
spacex_df = pd.read_csv("spacex_launch_dash.csv")
max_payload = spacex_df['Payload Mass (kg)'].max()
min_payload = spacex_df['Payload Mass (kg)'].min()
# Create a dash application
app = dash.Dash(__name__)
# Create an app layout
app.layout = html.Div(children=[html.H1('SpaceX Launch Records Dashboard',
style={'textAlign': 'center', 'color': '#503D36',
'font-size': 40}),
# TASK 1: Add a dropdown list to enable Launch Site selection
# The default select value is for ALL sites
html.Div([
html.Div([
html.H2('Launch Location:', style={'margin-right': '2em'})
]),
dcc.Dropdown(id='site-dropdown',
options=[
{'label':'All Sites','value':'all'},
{'label':'CCAFS LC-40','value':'CCAFS LC-40'},
{'label':'VAFB SLC-4E','value':'VAFB SLC-4E'},
{'label':'KSC LC-39A','value':'KSC LC-39A'},
{'label':'CCAFS SLC-40','value':'CCAFS SLC-40'}
],
value='All Sites',
placeholder='Select a Launch Site Here',
searchable=True,
style={'width': '80%', 'padding': '3px', 'font-size': '20px', 'text-align': 'center'})
], style={'display': 'flex'}),
html.Br(),
# TASK 2: Add a pie chart to show the total successful launches count for all sites
# If a specific launch site was selected, show the Success vs. Failed counts for the site
html.Div(dcc.Graph(id='success-pie-chart')),
html.Br(),
html.P("Payload range (Kg):"),
# TASK 3: Add a slider to select payload range
html.Div([
dcc.RangeSlider(id='payload-slider', min=0, max=10000, step=1000, value=[min_payload, max_payload],
marks={k:k for k in range(0,11000,1000)})]),
# TASK 4: Add a scatter chart to show the correlation between payload and launch success
html.Div(dcc.Graph(id='success-payload-scatter-chart')),
])
# TASK 2:
# Add a callback function for `site-dropdown` as input, `success-pie-chart` as output
@app.callback(Output(component_id='success-pie-chart', component_property='figure'),
Input(component_id='site-dropdown', component_property='value'))
def pie_plot(value):
if value == 'all':
df = spacex_df[spacex_df['class'] == 1].groupby(spacex_df['Launch Site']).sum().reset_index()
fig = px.pie(df, values='class', names='Launch Site', title='Successful Launches Across All Launch Sites',
color_discrete_sequence=px.colors.qualitative.Safe)
fig.update_traces(textposition='inside', textinfo='percent+label')
else:
df = spacex_df[spacex_df['Launch Site'] == value].groupby('class').size().reset_index()
df = df.rename(columns={0: 'count'})
fig = px.pie(df, values='count', names='class', title=value + ' Success Rate (blue=success)', color='class',
color_discrete_map={0:'darkred',1:'royalblue'})
return fig
# TASK 4:
# Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output
@app.callback(Output(component_id='success-payload-scatter-chart', component_property='figure'),
[Input(component_id='payload-slider', component_property='value'),
Input(component_id='site-dropdown', component_property='value')])
def scatter_plot(slide, dropdown):
low, high = slide
if dropdown == 'all':
df = spacex_df
else:
df = spacex_df[spacex_df['Launch Site'] == dropdown]
mask = (df['Payload Mass (kg)'] >= low) & (df['Payload Mass (kg)'] <= high)
s_df = df[mask].groupby(['Payload Mass (kg)','class','Booster Version Category']).size().reset_index()
s_df = s_df.rename(columns={0:'count'})
fig = px.scatter(s_df, x='Payload Mass (kg)', y='class', color='Booster Version Category', size='count',
title='Payload Mass vs. Success vs. Booster Version Category')
return fig
# Run the app
if __name__ == '__main__':
app.run_server()