-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnt_inpaint.m
executable file
·336 lines (291 loc) · 10.6 KB
/
nt_inpaint.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
function [y,yy]=nt_inpaint(x,w)
%function y=nt_inpaint(x,w) - weighted interpolation based on correlation structure
%
% y: interpolated data (only over w==0, a la STAR)
% yy: interpolated data (all times, a la SNS)
%
% x: data matrix
% w: weight vector or matrix
%
%
% Noisetools.
nt_greetings;
PCA_THRESH=10^-15;
NSMOOTH=0;
thresh=0.5;
nClosest=min(20,size(x,2)-1);
%nClosest=40;
if nargin<1; error('!'); end
if nargin<2||isempty(w); w=ones(size(x)); end
if ndims(x)>2; error('!'); end
if ~all(size(x)==size(w)); error('!'); end
[nsamples,nchan]=size(x);
%{
We have multichannel data x and a multichannel weighting function w (0 or
1). There are many configurations of valid/invalid channels to consider.
List them.
%}
[ww,nOccurrences,iBack]=patternDict(w); % all patterns of good/bad channels
nPatterns=size(ww,1);
disp(size(ww));
%{
Now we have a list of all the different weight patterns: ww. The
vector iBack indicates which data samples fit each pattern: w = ww(iBack,:).
%}
%{
Find which channels are 'neighbors' in terms of covariance.
%}
% weighted covariance matrix to determine which channels are close
x0=x;
[x,save_mean]=nt_demean(x,w);
[x,save_amp]=nt_normcol(x,w);
xx=x.*w;
c=(xx'*xx) ./ (w'*w); clear xx;
c=abs(c);
sims=c+10*eye(size(c)); % make sure self always scores highest so we can skip it
y=x;
%{
We now have a matrix indicating proximity between channels.
%}
%{
For each channel, we calculate the projection matrix on the the subspace spanned
by other *valid* channels. There are as many projection matrices as patterns
of valid/invalid channels. Each projection matrix is estimated on data samples for
which iChan is valid, and can be used to reconstruct data samples for which it is
invalid.
%}
for iChan=1:nchan
%{
We want to avoid having to consider all patterns of valid/unvalid
other channels. For that we'll group patterns.
First we order the other channels by decreasing similarity, putting
invalid samples last. This needs to be done for each pattern.
%}
sim=sims(iChan,:); % list of similarities with all other channels
sim=repmat(sim,nPatterns,1); % replicate so each pattern has own list
sim((~ww))=0; % for each list, give bad channels a low score
[~,closest]=sort(abs(sim),2,'descend'); % sort each list by decreasing similarity
for k=1:size(closest,1);
closest(k,find(sim(k,closest(k,:))==0))=0; % mark bad channels as 0
end
for k=1:size(closest,1);
if closest(k,1)==iChan;
closest(k,1:size(closest,2)-1) = closest(k,2:end); % skip first entry of list if same as iChan
else
% iChan was bad so not first
end
end
closest=closest(:,1:end-1); % last not valid if first skipped
%{
We now have, for each pattern, a list of channels closest to iChan.
There are a lot of different patterns, so we merge those for which the nClosest
channels are the same.
%}
% group patterns for which the nClosest most similar channels are the same
[C,IA,IC]=unique(closest(:,1:nClosest),'rows');
iBack2=IC(iBack); % maps each pattern to the data that fit it
%{
We now have a smaller array C of reduced patterns. The
vector iBack2 indicates which data samples correspond to each pattern.
%}
%{
For some patterns, iChan is valid throughout. We can skip these.
For others, only a few samples are invalid. To save time w can skip these
too and fix them later using serial interpolation.
%}
toFix=[];
NSKIP=2;
www=ones(size(x,1),1);
for iPattern=1:size(C,1)
%if any(~w(find(iBack2==iPattern),iChan)); toFix=[toFix,iPattern]; end
mySamples=find(iBack2==iPattern);
mySamples=mySamples(find(~w(mySamples,iChan)));
if numel(mySamples)<=NSKIP
www(mySamples)=0;
else
toFix=[toFix,iPattern];
end
end
C=C(toFix,:);
for iPattern=1:size(C,1)
%{
Estimate matrix to project iChan on the other channels listed in this
pattern.
%}
oChan=C(iPattern,:);
oChan(find(oChan==0))=[]; % exclude bad channels
% samples corresponding to this pattern
mySamples=find(iBack2==toFix(iPattern));
mySamples=mySamples(find(~w(mySamples,iChan)));
% mySamples=find(iBack2==iPattern);
% select data for which iChan *and* oChan are valid
iBothValid=all(w(:,[iChan,oChan]),2);
xxx=x(iBothValid, [iChan,oChan]);
%if size(xxx,1)<8000; disp([iChan, iPattern]); disp(size(xxx,1)); end
%%% --> we should be able to avoid this situation
if isempty(xxx);
disp([iChan, iPattern]); disp('empty');
continue; % we won't estimate or fix anything
end
% calculate covariance matrix
mn=mean(xxx,1);
xxx=nt_demean(xxx); % remove mean first
ccc=xxx'*xxx;
% PCA other channels to remove weak dimensions
[topcs,eigenvalues]=nt_pcarot(ccc(2:end,2:end));
idx=find(eigenvalues/max(eigenvalues) > PCA_THRESH); % discard weak dims
topcs=topcs(:,idx);
% projection matrix
b=ccc(1,2:end)*topcs / (topcs'*ccc(2:end,2:end)*topcs);
%{
We now have the projection matrix to project channel iChan on channels oChan,
applicable to samples corresponding to this pattern. We can use it
to fix samples for which iChan is invalid.
%}
y(mySamples,iChan) = ...
(x(mySamples,oChan) - repmat(mn(2:end),numel(mySamples),1))... % first remove mean of other chans...
*(topcs*b') ...
+ mn(1); % ... then restore mean of this channel
end
%{
Now we fix the isolated samples that we skipped using serial interpolation.
%}
MAXGAPSIZE=100;
y(:,iChan)=fillgap(y(:,iChan),www,MAXGAPSIZE);
end
y=bsxfun(@times,y,save_amp); % restore the initial ampitude
y=bsxfun(@plus,y,save_mean); % restore the initial mean
yy=y;
y(w~=0) = x0(w~=0); % don't touch valid parts
if ~nargout
% plot, don't return values
disp(nt_wpwr(y)/nt_wpwr(x));
figure(11); clf;
subplot 311; plot(x0); title('raw');
subplot 312; plot(y); title('projected on other channels')
subplot 313; plot(w); ylim([-.1 1.1]); title('weight');
clear w y
end
function [y,w]=fillgap(x,w,maxGapSize)
%y=fillgap(x,w,maxGapSize) - fill gaps using simple interpolation
%
% y: interpolated data
%
% x: data to interpolate
% w: weighting function
% maxGapSize: largest expected gap size
if nargin<2; error('!'); end
if nargin<3||isempty(maxGapSize); maxGapSize=1; end
if size(x,2)>1; error('!'); end
if size(x) ~= size(w); error('!'); end
y=x;
if all(w); return; end
% simple case size one
iToFix=1+find(~w(2:end-1)&w(1:end-2)&w(3:end));
y(iToFix)=(y(iToFix-1)+y(iToFix+1))/2;
w(iToFix)=1;
% general case size > 1
iStart=find(w(1:end-2) & ~w(2:end-1)); % position preceding gap
iStop=find(~w(1:end-1) & w(2:end)); % last position in gap
if isempty(iStart)||isempty(iStop); return; end
if iStop(1)<iStart(1);
iStop=iStop(2:end); % ignore gap at beginning
end
iStart=iStart(1:numel(iStop)); % ignore gap at end
for gapSize=2:maxGapSize
idx=find(iStop-iStart==gapSize);
for k=1:gapSize
% interpolate between samples on either side of gap
y(iStart(idx)+k) = ( y(iStart(idx)) * (gapSize-k+1) + y(iStart(idx)+gapSize+1) * k ) / (gapSize+1);
w(iStart(idx)+k) = 1;
end
end
% create a dictionary of weight patterns
function [ww,nOccurrences,iBack]=patternDict(w)
% ww: dictionary of patterns
% nOccurrences: number of times each pattern occurred
% iBack: index to reconstruct input from dictionary
[ww,~,IC,nOccurrences]=nt_unique(w,'rows');
[nOccurrences,iSort]=sort(nOccurrences, 'descend'); % sort by decreasing number
[~,iReverse]=sort(iSort); %
ww=ww(iSort,:); % same order for patterns, w = ww(iReverse1(IC),:)
iBack=iReverse(IC); % w = ww(iBack,:)
%%% TEST %%%
if 0
x0=sin(2*pi*(1:10000)'*(1:5)/10000);
x=x0*randn(5,10)+1;
x(1:4000,1)=x(1:4000,1)+0.3*randn(size(x(1:4000,1)));
w=ones(size(x));
w(1:4000,1)=0; w(4001:6000,3)=0; %w(6001:7000,4)=0; w(7001:8000,5)=0; w(8001:9000,6)=0; w(9001:10000,7)=0;
%w=randn(size(w))>0;
%b=nt_regw(x(:,1),x(:,2:end),w(:,1)); y=x(:,2:end)*b;
y=nt_inpaint(x,w);
figure(2); clf
subplot 211; plot([x(:,1),y(:,1)]); legend('raw','clean'); title('one channel'); subplot 212; plot(x(:,1)-y(:,1)); title('raw-clean');
end
if 0
x0=sin(2*pi*(1:10000)'*(1:3)/10000);
x=x0*nt_normcol(randn(3,5));
w=ones(size(x));
x(1:1000,1)=100; w(1:1000,1)=0;
x(2001:3000,1)=100; w(2001:3000,1)=0;
x(1:2000,2)=100; w(1:2000,2)=0;
x=x+0.1*randn(size(x));
[y,yy]=nt_inpaint(x,w);
figure(1); clf
subplot 311; plot(x); title('raw'); subplot 312; plot(y); title('clean'); subplot 313; plot(x-y); title('raw-clean');
end
if 0
N=3;
nchans=50;
x=zeros(1100,N);
for k=1:N
x(:,k)=sin(2*pi*k*(1:1100)'/1100);
end
x=x*randn(N,nchans);
x=nt_normcol(x) + 0*randn(size(x));
xx=x;
w=ones(size(x));
for k=1:nchans
xx(k*20+(1:10),k)=100;
w(k*20+(1:10),k)=0;
end
[y,yy]=nt_inpaint(xx,w);
figure(1); clf;
subplot 411; plot(x); title('orig'); subplot 412; plot(xx); title('w glitches');
subplot 413; plot(y); title('clean'); subplot 414; plot(x-y); title('diff w orig');
end
if 0
N=10;
nchans=20;
nsamples=1100;
x=zeros(nsamples,N);
for k=1:N
x(:,k)=sin(2*pi*k*(1:nsamples)'/nsamples);
end
x=x*randn(N,nchans);
% x=x+1*randn(size(x)); % add noise
xx=x;
w=ones(size(x));
for k=1:nchans
xx(500+k*20+(1:40),k)=100;
w(500+k*20+(1:40),k)=0;
end
[y]=nt_inpaint(xx,w);
figure(1); clf;
subplot 411; plot(x); title('original');
subplot 412; plot(xx); title ('with glitches');
subplot 413; plot (y); title ('fixed');
subplot 414; plot(x-y); title ('error');
end
if 0
[p,x]=nt_read_data('/data/meg/theoldmanandthesea/eeg/mc/MC_aespa_speech_45.mat'); x=x'; x=x(:,1:128); x=x(0+(1:10000),:);
%[p,x]=nt_read_data('/data/meg/arzounian/ADC_DA_140521_p20/ADC_DA_140521_p20_01_calib'); x=x'; x=x(1:10000,:);
x=nt_demean(x);
[x,w]=nt_detrend(x,10);
profile on; y=nt_inpaint(x,w); profile report;
figure(1); clf
subplot 311; plot(x); title('raw'); subplot 312; plot(y); title('clean'); subplot 313; plot(x-y); title('raw-clean');
figure(2); clf
ch=35;subplot 311; plot([x(:,ch),y(:,ch)]); subplot 312; plot(x(:,ch)-y(:,ch)); subplot 313; plot(w(:,ch), '.-');
end