-
Notifications
You must be signed in to change notification settings - Fork 98
/
disjkstrasAlgorithm.py
160 lines (126 loc) · 4.37 KB
/
disjkstrasAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import sys
class Vertex:
def __init__(self, node):
self.id = node
self.adjacent = {}
# Set distance to infinity for all nodes
self.distance = sys.maxint
# Mark all nodes unvisited
self.visited = False
# Predecessor
self.previous = None
def add_neighbor(self, neighbor, weight=0):
self.adjacent[neighbor] = weight
def get_connections(self):
return self.adjacent.keys()
def get_id(self):
return self.id
def get_weight(self, neighbor):
return self.adjacent[neighbor]
def set_distance(self, dist):
self.distance = dist
def get_distance(self):
return self.distance
def set_previous(self, prev):
self.previous = prev
def set_visited(self):
self.visited = True
def __str__(self):
return str(self.id) + ' adjacent: ' + str([x.id for x in self.adjacent])
class Graph:
def __init__(self):
self.vert_dict = {}
self.num_vertices = 0
def __iter__(self):
return iter(self.vert_dict.values())
def add_vertex(self, node):
self.num_vertices = self.num_vertices + 1
new_vertex = Vertex(node)
self.vert_dict[node] = new_vertex
return new_vertex
def get_vertex(self, n):
if n in self.vert_dict:
return self.vert_dict[n]
else:
return None
def add_edge(self, frm, to, cost = 0):
if frm not in self.vert_dict:
self.add_vertex(frm)
if to not in self.vert_dict:
self.add_vertex(to)
self.vert_dict[frm].add_neighbor(self.vert_dict[to], cost)
self.vert_dict[to].add_neighbor(self.vert_dict[frm], cost)
def get_vertices(self):
return self.vert_dict.keys()
def set_previous(self, current):
self.previous = current
def get_previous(self, current):
return self.previous
def shortest(v, path):
''' make shortest path from v.previous'''
if v.previous:
path.append(v.previous.get_id())
shortest(v.previous, path)
return
import heapq
def dijkstra(aGraph, start, target):
print '''Dijkstra's shortest path'''
# Set the distance for the start node to zero
start.set_distance(0)
# Put tuple pair into the priority queue
unvisited_queue = [(v.get_distance(),v) for v in aGraph]
heapq.heapify(unvisited_queue)
while len(unvisited_queue):
# Pops a vertex with the smallest distance
uv = heapq.heappop(unvisited_queue)
current = uv[1]
current.set_visited()
#for next in v.adjacent:
for next in current.adjacent:
# if visited, skip
if next.visited:
continue
new_dist = current.get_distance() + current.get_weight(next)
if new_dist < next.get_distance():
next.set_distance(new_dist)
next.set_previous(current)
print 'updated : current = %s next = %s new_dist = %s' \
%(current.get_id(), next.get_id(), next.get_distance())
else:
print 'not updated : current = %s next = %s new_dist = %s' \
%(current.get_id(), next.get_id(), next.get_distance())
# Rebuild heap
# 1. Pop every item
while len(unvisited_queue):
heapq.heappop(unvisited_queue)
# 2. Put all vertices not visited into the queue
unvisited_queue = [(v.get_distance(),v) for v in aGraph if not v.visited]
heapq.heapify(unvisited_queue)
if __name__ == '__main__':
g = Graph()
g.add_vertex('a')
g.add_vertex('b')
g.add_vertex('c')
g.add_vertex('d')
g.add_vertex('e')
g.add_vertex('f')
g.add_edge('a', 'b', 7)
g.add_edge('a', 'c', 9)
g.add_edge('a', 'f', 14)
g.add_edge('b', 'c', 10)
g.add_edge('b', 'd', 15)
g.add_edge('c', 'd', 11)
g.add_edge('c', 'f', 2)
g.add_edge('d', 'e', 6)
g.add_edge('e', 'f', 9)
print 'Graph data:'
for v in g:
for w in v.get_connections():
vid = v.get_id()
wid = w.get_id()
print '( %s , %s, %3d)' % ( vid, wid, v.get_weight(w))
dijkstra(g, g.get_vertex('a'), g.get_vertex('e'))
target = g.get_vertex('e')
path = [target.get_id()]
shortest(target, path)
print 'The shortest path : %s' %(path[::-1])