-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschroedinger.py
executable file
·85 lines (64 loc) · 2.29 KB
/
schroedinger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2011 Tiziano Müller <[email protected]>
#
#
#
#
from numpy import zeros, exp, concatenate, arange, pi, abs, sqrt, array
from scipy import fft, ifft
def harmonicPotential(x):
return 0.5*x**2
def wavePacket(x, k_0):
return exp(-0.5*x**2 + 1j*k_0*x)
class Schroedinger1D:
''' This class encapsulates the 1D schroedinger equation solver '''
def __init__(self, N=256, L=10):
self._N = N
self._L = L
self._F = zeros(N)
self._dx = 2.*L/N
self._dk = 2.*pi / (N*self._dx)
self._x = (arange(N) - N/2) * self._dx
# this is the grid in momentum space. Instead of realigning self._F after fft and before momentumEvolve, resp again
# after momentumEvolve and before ifft I simply transform the grid itself (see example (6.7) in the lecture notes)
k = (arange(N) - N/2)
self._k = concatenate((k[self._N//2:], k[0:self._N//2])) * self._dk
# a simple wave-package moving constantly to the right and starting at x=0
self.setInitial(lambda x: wavePacket(x, 2.))
# use the harmonic potential as default potential
self._V = harmonicPotential
def evolve(self, dt = 0.001):
''' one iteration-step '''
def spatialEvolve(f, x):
return f*exp(-0.5 * self._V(x) * dt * 1j)
def momentumEvolve(F, k):
return F*exp(-0.5 * k*k * dt * 1j)
self._f = map(spatialEvolve, self._f, self._x)
self._F = fft(self._f)
self._F = map(momentumEvolve, self._F, self._k)
self._f = ifft(self._F)
self._f = map(spatialEvolve, self._f, self._x)
def f(self):
return self._f
def F(self):
return self._F
def x(self):
return self._x
def V(self):
return self._V(self._x)
def setPotential(self, V):
''' set the potential (as a function of an array of x-values)'''
self._V = V
def setInitial(self, f):
''' set the initial conditions (as a function of x of an array of x-values)'''
self._f = f(self._x)
if __name__ == '__main__':
from matplotlib.pyplot import plot, show
s = Schroedinger1D(128)
plot(s.x(), abs(s.f()))
for i in xrange(100):
s.evolve()
plot(s.x(), abs(s.f()))
show()