diff --git a/_brand.yml b/_brand.yml new file mode 100644 index 0000000..7004531 --- /dev/null +++ b/_brand.yml @@ -0,0 +1,14 @@ +color: + palette: + orange: "#cf3f02" + primary: orange + +logo: + medium: logo.png + +typography: + fonts: + - family: Roboto + source: google + base: Roboto + headings: Roboto diff --git a/_quarto.yml b/_quarto.yml index 3990c5a..cb6e55b 100644 --- a/_quarto.yml +++ b/_quarto.yml @@ -9,6 +9,7 @@ website: page-navigation: true page-footer: + left: "[developmentseeed.org](https://developmentseed.org)" right: "This page is built with ❤️ and [Quarto](https://quarto.org/)." navbar: right: diff --git a/index.qmd b/index.qmd index 43c98d5..2bc2718 100644 --- a/index.qmd +++ b/index.qmd @@ -5,7 +5,10 @@ date: 2024-12-13 Tile rendering time has a big impact on the user experience so the goal is to minimize the time it takes to properly render tiles. ## icesat2-boreal collection - + The icesat2-boreal collection is a MAAP dataset contains aboveground biomass predictions for the boreal region. The predictions are stored in cloud-optimized geotiffs (COGs) in AWS S3 storage. The collection can be visualized using dynamic tiling applications like `titiler`. For more details about the underlying data, check out the [product page](https://ceos.org/gst/icesat2-boreal-biomass.html). @@ -36,20 +39,13 @@ Each test includes warmup iterations and multiple rounds to ensure reliable meas ```{python} -#| label: load -#| echo: false +# | label: load +# | echo: false import json -from urllib.parse import urlencode -import hvplot.pandas -import matplotlib.colors -import matplotlib.pyplot as plt -import numpy as np +import hvplot.pandas # noqa import pandas as pd -from folium import Element, TileLayer -from folium.plugins import DualMap -from IPython.display import HTML, display def load_benchmark_results() -> pd.DataFrame: @@ -82,8 +78,9 @@ df = load_benchmark_results() ``` ```{python} -#| label: plot -#| echo: false +# | label: plot +# | echo: false + lines = df.hvplot.line( x="zoom", @@ -128,9 +125,18 @@ Try browsing a map with each tile service to get a sense for what the rendering ::: ```{python} -#| echo: false -#| label: synchronized-maps -#| tags: [interactive] +# | echo: false +# | label: synchronized-maps +# | tags: [interactive] + +from urllib.parse import urlencode + +import matplotlib.colors +import matplotlib.pyplot as plt +import numpy as np +from folium import TileLayer +from folium.plugins import DualMap +from IPython.display import HTML, display m = DualMap(location=(65, 30), zoom_start=6, tiles="openstreetmap") @@ -173,6 +179,7 @@ mosaic_json_tiles = TileLayer( def apply_gamma(color, gamma): return (np.array(color) ** gamma).tolist() + cmap = plt.get_cmap("gist_earth_r") colors = cmap(np.linspace(0, 1, 10)) # Sample 10 colors for gradient diff --git a/logo.png b/logo.png new file mode 100644 index 0000000..f9f3773 Binary files /dev/null and b/logo.png differ diff --git a/styles.scss b/styles.scss index b6ac443..0634b8e 100644 --- a/styles.scss +++ b/styles.scss @@ -1,5 +1,4 @@ /*-- scss:defaults --*/ -// Override Bootstrap and Quarto variables $primary: #cf3f02; $link-color: $primary; $link-hover-color: lighten($primary, 10%); @@ -21,16 +20,3 @@ ul { background: $primary; color: $white; } - -// Utility classes -.scrollable { - max-height: 60%; - overflow-y: auto; - overflow-x: auto; -} - -.hide-title { - h2 { - display: none; - } -}