diff --git a/_brand.yml b/_brand.yml
new file mode 100644
index 0000000..7004531
--- /dev/null
+++ b/_brand.yml
@@ -0,0 +1,14 @@
+color:
+ palette:
+ orange: "#cf3f02"
+ primary: orange
+
+logo:
+ medium: logo.png
+
+typography:
+ fonts:
+ - family: Roboto
+ source: google
+ base: Roboto
+ headings: Roboto
diff --git a/_quarto.yml b/_quarto.yml
index 3990c5a..cb6e55b 100644
--- a/_quarto.yml
+++ b/_quarto.yml
@@ -9,6 +9,7 @@ website:
page-navigation: true
page-footer:
+ left: "[developmentseeed.org](https://developmentseed.org)"
right: "This page is built with ❤️ and [Quarto](https://quarto.org/)."
navbar:
right:
diff --git a/index.qmd b/index.qmd
index 43c98d5..2bc2718 100644
--- a/index.qmd
+++ b/index.qmd
@@ -5,7 +5,10 @@ date: 2024-12-13
Tile rendering time has a big impact on the user experience so the goal is to minimize the time it takes to properly render tiles.
## icesat2-boreal collection
-
+
The icesat2-boreal collection is a MAAP dataset contains aboveground biomass predictions for the boreal region. The predictions are stored in cloud-optimized geotiffs (COGs) in AWS S3 storage. The collection can be visualized using dynamic tiling applications like `titiler`. For more details about the underlying data, check out the [product page](https://ceos.org/gst/icesat2-boreal-biomass.html).
@@ -36,20 +39,13 @@ Each test includes warmup iterations and multiple rounds to ensure reliable meas
```{python}
-#| label: load
-#| echo: false
+# | label: load
+# | echo: false
import json
-from urllib.parse import urlencode
-import hvplot.pandas
-import matplotlib.colors
-import matplotlib.pyplot as plt
-import numpy as np
+import hvplot.pandas # noqa
import pandas as pd
-from folium import Element, TileLayer
-from folium.plugins import DualMap
-from IPython.display import HTML, display
def load_benchmark_results() -> pd.DataFrame:
@@ -82,8 +78,9 @@ df = load_benchmark_results()
```
```{python}
-#| label: plot
-#| echo: false
+# | label: plot
+# | echo: false
+
lines = df.hvplot.line(
x="zoom",
@@ -128,9 +125,18 @@ Try browsing a map with each tile service to get a sense for what the rendering
:::
```{python}
-#| echo: false
-#| label: synchronized-maps
-#| tags: [interactive]
+# | echo: false
+# | label: synchronized-maps
+# | tags: [interactive]
+
+from urllib.parse import urlencode
+
+import matplotlib.colors
+import matplotlib.pyplot as plt
+import numpy as np
+from folium import TileLayer
+from folium.plugins import DualMap
+from IPython.display import HTML, display
m = DualMap(location=(65, 30), zoom_start=6, tiles="openstreetmap")
@@ -173,6 +179,7 @@ mosaic_json_tiles = TileLayer(
def apply_gamma(color, gamma):
return (np.array(color) ** gamma).tolist()
+
cmap = plt.get_cmap("gist_earth_r")
colors = cmap(np.linspace(0, 1, 10)) # Sample 10 colors for gradient
diff --git a/logo.png b/logo.png
new file mode 100644
index 0000000..f9f3773
Binary files /dev/null and b/logo.png differ
diff --git a/styles.scss b/styles.scss
index b6ac443..0634b8e 100644
--- a/styles.scss
+++ b/styles.scss
@@ -1,5 +1,4 @@
/*-- scss:defaults --*/
-// Override Bootstrap and Quarto variables
$primary: #cf3f02;
$link-color: $primary;
$link-hover-color: lighten($primary, 10%);
@@ -21,16 +20,3 @@ ul {
background: $primary;
color: $white;
}
-
-// Utility classes
-.scrollable {
- max-height: 60%;
- overflow-y: auto;
- overflow-x: auto;
-}
-
-.hide-title {
- h2 {
- display: none;
- }
-}