forked from hyysun/simform
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexample_commands.txt
50 lines (32 loc) · 1.63 KB
/
example_commands.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Some example commands which are tested fine on Stanford ICME:
We have 99 exodus files in the input directory: hdfs://icme-hadoop1.localdomain/user/yangyang/simform/
First, we setup database, and get the Makefile 'runs':
make setup_database name=runs variable=TEMP dir=hdfs://icme-hadoop1.localdomain/user/yangyang/simform/
After we get 'runs', we can do the following things:
make -f runs preprocess
Convert exodus files to sequence files:
make -f runs convert timestepfile=timesteps.txt
(using normalized timesteps, time: 20min36s)
make -f runs convert exodus2seq_output=hdfs://icme-hadoop1.localdomain/user/yangyang/simform/output/data.seq2/
(without using normalized timesteps, time: 20min24s)
Predict without SVD:
make -f runs predict design=design_points.txt points=new_points.txt
(design points:99 new points:10, time:16min2s)
make -f runs seq2exodus output_name=thermal_maze_interpolation
(output 10 new interpolation exodus files, time: 4min45s)
Predict with SVD (we can get not only interpolation value but also estimated errors):
Convert sequenc files to matrix sequence files:
make -f runs seq2mseq
(time:2hr...)
Compute the SVD model:
make -f runs model numExodusfiles=99
(step1: full1, 44min46s
step2: full2 1min
step3: full3 4min6s
step4: TSMatMul 3min42s
total time: 54min
Predict with SVD singular values and vectors (before this steps, we should create weights.txt first):
make -f runs predict weights=weights.txt SVD=True
(new points:2, time: 22min26s)
make -f runs seq2exodus output_name=thermal_maze_interpolation SVD=True
(output 2 new interpolation exodus file, time: 2min40s)