-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTV_Bayes.m
80 lines (58 loc) · 1.74 KB
/
TV_Bayes.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
function [x_est,mean_pars,noise_var,lk,COV,par,x_est1]=TV_Bayes(y,u,BAS)
%This algorithm implements the Relevance Vector Machine for selection of
%the best basis function for Time-Varying identification.
%For reference see:
%Michael E. Tipping,'Sparse Bayesian Learning and the Relevance Vector
%Machine',Journal of Machine Learning Research 1 (2001) 211{244
if ~isempty(u)
[N,nb]=size(u);
BASIS=[];
if nargin<3
for i=1:nb
BAS{i}=ones(N,1);
end
end
for i=1:nb
N_basis(i)=size(BAS{i},2);
BASIS=[BASIS BAS{i}.*repmat(u(:,i),1,N_basis(i))];
end
else
BASIS=BAS;
N=length(y);
end
par=BASIS\y;
%par=robustfit(BASIS,y,[],[],'off');
x_est=BASIS*par;
x_est1=x_est;
error=y-x_est;
beta=1/var(error);
alpha=(1/beta)*diag(eye(size(BASIS,2))/(BASIS'*BASIS));
alpha=length(par)/(2*(par'*par));
mean_pars=par';
Max_iter=50;
clear lk
alpha=1/(10^-10);
mean_pars=randn(size(mean_pars));
for iter=1:Max_iter
Be=beta*(BASIS'*BASIS);
lambda=eig(Be);
gamma=sum(lambda./(alpha+lambda));
alpha=gamma/(mean_pars*mean_pars');
error=y-BASIS*mean_pars';
beta=1/((1/(N-gamma))*(sum(error.^2)));
A=beta*(BASIS'*BASIS)+alpha*eye(size(BASIS,2));
mean_pars=(beta*(A\(BASIS'*y)))';
lk(iter)=(size(BASIS,2)/2)*log(alpha)+(size(BASIS,1)/2)*log(beta)-...
(beta/2)*norm(y-BASIS*mean_pars')^2-(alpha/2)*(mean_pars*mean_pars')-...
(1/2)*log(det(A))-(N/2)*log(2*pi);
if iter>1
if((abs(lk(iter)-lk(iter-1)))/abs(lk(iter-1)))<1e-7
break
end
end
end
mean_pars=mean_pars';
x_est=BASIS*mean_pars;
noise_var=1/beta;
COV=(eye(size(A))/(A));
return