From e18d4896582e1607f1e94642e21f411656412633 Mon Sep 17 00:00:00 2001 From: Paul Dicker Date: Thu, 14 Dec 2017 18:29:16 +0100 Subject: [PATCH 1/3] Add HC-128 RNG --- benches/generators.rs | 6 +- src/prng/hc128.rs | 504 ++++++++++++++++++++++++++++++++++++++++++ src/prng/mod.rs | 2 + 3 files changed, 511 insertions(+), 1 deletion(-) create mode 100644 src/prng/hc128.rs diff --git a/benches/generators.rs b/benches/generators.rs index 5959ad839b9..d02d2d43bbd 100644 --- a/benches/generators.rs +++ b/benches/generators.rs @@ -10,7 +10,7 @@ use std::mem::size_of; use test::{black_box, Bencher}; use rand::{Rng, NewSeeded, Sample, SeedFromRng, StdRng, OsRng, JitterRng}; -use rand::prng::{XorShiftRng, IsaacRng, Isaac64Rng, ChaChaRng}; +use rand::prng::*; macro_rules! gen_bytes { ($fnn:ident, $gen:ident) => { @@ -30,6 +30,7 @@ macro_rules! gen_bytes { } gen_bytes!(gen_bytes_xorshift, XorShiftRng); +gen_bytes!(gen_bytes_hc128, Hc128Rng); gen_bytes!(gen_bytes_isaac, IsaacRng); gen_bytes!(gen_bytes_isaac64, Isaac64Rng); gen_bytes!(gen_bytes_chacha, ChaChaRng); @@ -53,6 +54,7 @@ macro_rules! gen_uint { } gen_uint!(gen_u32_xorshift, u32, XorShiftRng); +gen_uint!(gen_u32_hc128, u32, Hc128Rng); gen_uint!(gen_u32_isaac, u32, IsaacRng); gen_uint!(gen_u32_isaac64, u32, Isaac64Rng); gen_uint!(gen_u32_chacha, u32, ChaChaRng); @@ -60,6 +62,7 @@ gen_uint!(gen_u32_std, u32, StdRng); gen_uint!(gen_u32_os, u32, OsRng); gen_uint!(gen_u64_xorshift, u64, XorShiftRng); +gen_uint!(gen_u64_hc128, u64, Hc128Rng); gen_uint!(gen_u64_isaac, u64, IsaacRng); gen_uint!(gen_u64_isaac64, u64, Isaac64Rng); gen_uint!(gen_u64_chacha, u64, ChaChaRng); @@ -88,6 +91,7 @@ macro_rules! init_gen { } init_gen!(init_xorshift, XorShiftRng); +init_gen!(init_hc128, Hc128Rng); init_gen!(init_isaac, IsaacRng); init_gen!(init_isaac64, Isaac64Rng); init_gen!(init_chacha, ChaChaRng); diff --git a/src/prng/hc128.rs b/src/prng/hc128.rs new file mode 100644 index 00000000000..d9683227d7b --- /dev/null +++ b/src/prng/hc128.rs @@ -0,0 +1,504 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 or the MIT license +// , at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The HC-128 random number generator. + +use core::fmt; +use core::slice; + +use rand_core::{impls, le}; + +use {Rng, SeedFromRng, SeedableRng, Error}; + +/// A cryptographically secure random number generator that uses the HC-128 +/// algorithm. +/// +/// HC-128 is a stream cipher designed by Hongjun Wu[1], that we use as an RNG. +/// It is selected as one of the "stream ciphers suitable for widespread +/// adoption" by eSTREAM[2]. +/// +/// HC-128 is an array based RNG. In this it is similar to RC-4 and ISAAC before +/// it, but those have never been proven cryptographically secure (or have even +/// been broken). +/// +/// Because HC-128 works with simple indexing into a large array and with a few +/// operations that parallelize well, it has very good performance. The size of +/// the array it needs, 4kb, can however be a disadvantage. +/// +/// This implementation is not based on the version of HC-128 submitted to the +/// eSTREAM contest, but on a later version by the author with a few small +/// improvements from December 15, 2009[3]. +/// +/// HC-128 has no known weaknesses that are easier to exploit than doing a +/// brute-force search of 2128. A very comprehensive analysis of the +/// current state of known attacks / weaknesses of HC-128 is given in [4]. +/// +/// ## References +/// [1]: Hongjun Wu (2008). ["The Stream Cipher HC-128"] +/// (http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf). +/// *The eSTREAM Finalists*, LNCS 4986, pp. 39--47, Springer-Verlag. +/// +/// [2]: [eSTREAM: the ECRYPT Stream Cipher Project] +/// (http://www.ecrypt.eu.org/stream/) +/// +/// [3]: Hongjun Wu, [Stream Ciphers HC-128 and HC-256] +/// (http://www3.ntu.edu.sg/home/wuhj/research/hc/index.html) +/// +/// [4]: Shashwat Raizada (January 2015), +/// ["Some Results On Analysis And Implementation Of HC-128 Stream Cipher"] +/// (http://library.isical.ac.in:8080/jspui/bitstream/123456789/6636/1/TH431.pdf). +pub struct Hc128Rng { + state: Hc128, + results: [u32; 16], + index: usize, +} + +impl Clone for Hc128Rng { + fn clone(&self) -> Hc128Rng { + Hc128Rng { + state: self.state, + results: self.results, + index: self.index + } + } +} + +#[derive(Copy, Clone)] +struct Hc128 { + t: [u32; 1024], + counter1024: usize, +} + +// Custom Debug implementation that does not expose the internal state +impl fmt::Debug for Hc128Rng { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "Hc128Rng {{}}") + } +} + +impl Hc128Rng { + pub fn init(seed: &[u32]) -> Hc128Rng { + #[inline] + fn f1(x: u32) -> u32 { + x.rotate_right(7) ^ x.rotate_right(18) ^ (x >> 3) + } + + #[inline] + fn f2(x: u32) -> u32 { + x.rotate_right(17) ^ x.rotate_right(19) ^ (x >> 10) + } + + let mut t = [0u32; 1024]; + + // Expand the key and iv into P and Q + let (key, iv) = seed.split_at(4); + t[..4].copy_from_slice(key); + t[4..8].copy_from_slice(key); + t[8..12].copy_from_slice(iv); + t[12..16].copy_from_slice(iv); + + // Generate the 256 intermediate values W[16] ... W[256+16-1], and + // copy the last 16 generated values to the start op P. + for i in 16..256+16 { + t[i] = f2(t[i-2]).wrapping_add(t[i-7]).wrapping_add(f1(t[i-15])) + .wrapping_add(t[i-16]).wrapping_add(i as u32); + } + { + let (p1, p2) = t.split_at_mut(256); + p1[0..16].copy_from_slice(&p2[0..16]); + } + + // Generate both the P and Q tables + for i in 16..1024 { + t[i] = f2(t[i-2]).wrapping_add(t[i-7]).wrapping_add(f1(t[i-15])) + .wrapping_add(t[i-16]).wrapping_add(256 + i as u32); + } + + let mut state = Hc128Rng { + state: Hc128 { t: t, counter1024: 0 }, + results: [0; 16], + index: 0, + }; + + // run the cipher 1024 steps + for _ in 0..64 { state.state.sixteen_steps() }; + state.state.counter1024 = 0; + + // Prepare the first set of results + state.state.update(&mut state.results); + state + } +} + +impl Hc128 { + // One step of HC-128, update P and generate 32 bits keystream + #[inline(always)] + fn step_p(&mut self, i: usize, i511: usize, i3: usize, i10: usize, i12: usize) + -> u32 + { + let (p, q) = self.t.split_at_mut(512); + // FIXME: it would be great if we the bounds checks here could be + // optimized out, and we would not need unsafe. + // This improves performance by about 7%. + unsafe { + let temp0 = p.get_unchecked(i511).rotate_right(23); + let temp1 = p.get_unchecked(i3).rotate_right(10); + let temp2 = p.get_unchecked(i10).rotate_right(8); + *p.get_unchecked_mut(i) = p.get_unchecked(i) + .wrapping_add(temp2) + .wrapping_add(temp0 ^ temp1); + let temp3 = { + // The h1 function in HC-128 + let a = *p.get_unchecked(i12) as u8; + let c = (p.get_unchecked(i12) >> 16) as u8; + q[a as usize].wrapping_add(q[256 + c as usize]) + }; + temp3 ^ p.get_unchecked(i) + } + } + + // One step of HC-128, update Q and generate 32 bits keystream + // Similar to `step_p`, but `p` and `q` are swapped, and the rotates are to + // the left instead of to the right. + #[inline(always)] + fn step_q(&mut self, i: usize, i511: usize, i3: usize, i10: usize, i12: usize) + -> u32 + { + let (p, q) = self.t.split_at_mut(512); + unsafe { + let temp0 = q.get_unchecked(i511).rotate_left(23); + let temp1 = q.get_unchecked(i3).rotate_left(10); + let temp2 = q.get_unchecked(i10).rotate_left(8); + *q.get_unchecked_mut(i) = q.get_unchecked(i) + .wrapping_add(temp2) + .wrapping_add(temp0 ^ temp1); + let temp3 = { + // The h2 function in HC-128 + let a = *q.get_unchecked(i12) as u8; + let c = (q.get_unchecked(i12) >> 16) as u8; + p[a as usize].wrapping_add(p[256 + c as usize]) + }; + temp3 ^ q.get_unchecked(i) + } + } + + fn update(&mut self, results: &mut [u32]) { + assert!(self.counter1024 % 16 == 0); + + let cc = self.counter1024 % 512; + let dd = (cc + 16) % 512; + let ee = cc.wrapping_sub(16) % 512; + + if self.counter1024 & 512 == 0 { + // P block + results[0] = self.step_p(cc+0, cc+1, ee+13, ee+6, ee+4); + results[1] = self.step_p(cc+1, cc+2, ee+14, ee+7, ee+5); + results[2] = self.step_p(cc+2, cc+3, ee+15, ee+8, ee+6); + results[3] = self.step_p(cc+3, cc+4, cc+0, ee+9, ee+7); + results[4] = self.step_p(cc+4, cc+5, cc+1, ee+10, ee+8); + results[5] = self.step_p(cc+5, cc+6, cc+2, ee+11, ee+9); + results[6] = self.step_p(cc+6, cc+7, cc+3, ee+12, ee+10); + results[7] = self.step_p(cc+7, cc+8, cc+4, ee+13, ee+11); + results[8] = self.step_p(cc+8, cc+9, cc+5, ee+14, ee+12); + results[9] = self.step_p(cc+9, cc+10, cc+6, ee+15, ee+13); + results[10] = self.step_p(cc+10, cc+11, cc+7, cc+0, ee+14); + results[11] = self.step_p(cc+11, cc+12, cc+8, cc+1, ee+15); + results[12] = self.step_p(cc+12, cc+13, cc+9, cc+2, cc+0); + results[13] = self.step_p(cc+13, cc+14, cc+10, cc+3, cc+1); + results[14] = self.step_p(cc+14, cc+15, cc+11, cc+4, cc+2); + results[15] = self.step_p(cc+15, dd+0, cc+12, cc+5, cc+3); + } else { + // Q block + results[0] = self.step_q(cc+0, cc+1, ee+13, ee+6, ee+4); + results[1] = self.step_q(cc+1, cc+2, ee+14, ee+7, ee+5); + results[2] = self.step_q(cc+2, cc+3, ee+15, ee+8, ee+6); + results[3] = self.step_q(cc+3, cc+4, cc+0, ee+9, ee+7); + results[4] = self.step_q(cc+4, cc+5, cc+1, ee+10, ee+8); + results[5] = self.step_q(cc+5, cc+6, cc+2, ee+11, ee+9); + results[6] = self.step_q(cc+6, cc+7, cc+3, ee+12, ee+10); + results[7] = self.step_q(cc+7, cc+8, cc+4, ee+13, ee+11); + results[8] = self.step_q(cc+8, cc+9, cc+5, ee+14, ee+12); + results[9] = self.step_q(cc+9, cc+10, cc+6, ee+15, ee+13); + results[10] = self.step_q(cc+10, cc+11, cc+7, cc+0, ee+14); + results[11] = self.step_q(cc+11, cc+12, cc+8, cc+1, ee+15); + results[12] = self.step_q(cc+12, cc+13, cc+9, cc+2, cc+0); + results[13] = self.step_q(cc+13, cc+14, cc+10, cc+3, cc+1); + results[14] = self.step_q(cc+14, cc+15, cc+11, cc+4, cc+2); + results[15] = self.step_q(cc+15, dd+0, cc+12, cc+5, cc+3); + } + self.counter1024 = self.counter1024.wrapping_add(16); + } + + fn sixteen_steps(&mut self) { + assert!(self.counter1024 % 16 == 0); + + let cc = self.counter1024 % 512; + let dd = (cc + 16) % 512; + let ee = cc.wrapping_sub(16) % 512; + + if self.counter1024 < 512 { + // P block + self.t[cc+0] = self.step_p(cc+0, cc+1, ee+13, ee+6, ee+4); + self.t[cc+1] = self.step_p(cc+1, cc+2, ee+14, ee+7, ee+5); + self.t[cc+2] = self.step_p(cc+2, cc+3, ee+15, ee+8, ee+6); + self.t[cc+3] = self.step_p(cc+3, cc+4, cc+0, ee+9, ee+7); + self.t[cc+4] = self.step_p(cc+4, cc+5, cc+1, ee+10, ee+8); + self.t[cc+5] = self.step_p(cc+5, cc+6, cc+2, ee+11, ee+9); + self.t[cc+6] = self.step_p(cc+6, cc+7, cc+3, ee+12, ee+10); + self.t[cc+7] = self.step_p(cc+7, cc+8, cc+4, ee+13, ee+11); + self.t[cc+8] = self.step_p(cc+8, cc+9, cc+5, ee+14, ee+12); + self.t[cc+9] = self.step_p(cc+9, cc+10, cc+6, ee+15, ee+13); + self.t[cc+10] = self.step_p(cc+10, cc+11, cc+7, cc+0, ee+14); + self.t[cc+11] = self.step_p(cc+11, cc+12, cc+8, cc+1, ee+15); + self.t[cc+12] = self.step_p(cc+12, cc+13, cc+9, cc+2, cc+0); + self.t[cc+13] = self.step_p(cc+13, cc+14, cc+10, cc+3, cc+1); + self.t[cc+14] = self.step_p(cc+14, cc+15, cc+11, cc+4, cc+2); + self.t[cc+15] = self.step_p(cc+15, dd+0, cc+12, cc+5, cc+3); + } else { + // Q block + self.t[cc+512+0] = self.step_q(cc+0, cc+1, ee+13, ee+6, ee+4); + self.t[cc+512+1] = self.step_q(cc+1, cc+2, ee+14, ee+7, ee+5); + self.t[cc+512+2] = self.step_q(cc+2, cc+3, ee+15, ee+8, ee+6); + self.t[cc+512+3] = self.step_q(cc+3, cc+4, cc+0, ee+9, ee+7); + self.t[cc+512+4] = self.step_q(cc+4, cc+5, cc+1, ee+10, ee+8); + self.t[cc+512+5] = self.step_q(cc+5, cc+6, cc+2, ee+11, ee+9); + self.t[cc+512+6] = self.step_q(cc+6, cc+7, cc+3, ee+12, ee+10); + self.t[cc+512+7] = self.step_q(cc+7, cc+8, cc+4, ee+13, ee+11); + self.t[cc+512+8] = self.step_q(cc+8, cc+9, cc+5, ee+14, ee+12); + self.t[cc+512+9] = self.step_q(cc+9, cc+10, cc+6, ee+15, ee+13); + self.t[cc+512+10] = self.step_q(cc+10, cc+11, cc+7, cc+0, ee+14); + self.t[cc+512+11] = self.step_q(cc+11, cc+12, cc+8, cc+1, ee+15); + self.t[cc+512+12] = self.step_q(cc+12, cc+13, cc+9, cc+2, cc+0); + self.t[cc+512+13] = self.step_q(cc+13, cc+14, cc+10, cc+3, cc+1); + self.t[cc+512+14] = self.step_q(cc+14, cc+15, cc+11, cc+4, cc+2); + self.t[cc+512+15] = self.step_q(cc+15, dd+0, cc+12, cc+5, cc+3); + } + self.counter1024 += 16; + } +} + +impl Rng for Hc128Rng { + #[inline] + fn next_u32(&mut self) -> u32 { + if self.index >= 16 { + self.state.update(&mut self.results); + self.index = 0; + } + + let value = self.results[self.index]; + self.index += 1; + value + } + + #[inline] + fn next_u64(&mut self) -> u64 { + let index = self.index; + if index < 15 { + self.index += 2; + // Read an u64 from the current index + if cfg!(any(target_arch = "x86", target_arch = "x86_64")) { + unsafe { *(&self.results[index] as *const u32 as *const u64) } + } else { + let x = self.results[index] as u64; + let y = self.results[index + 1] as u64; + (y << 32) | x + } + } else if index >= 16 { + self.state.update(&mut self.results); + self.index = 2; + let x = self.results[0] as u64; + let y = self.results[1] as u64; + (y << 32) | x + } else { + let x = self.results[15] as u64; + self.state.update(&mut self.results); + self.index = 1; + let y = self.results[0] as u64; + (y << 32) | x + } + } + + #[cfg(feature = "i128_support")] + fn next_u128(&mut self) -> u128 { + impls::next_u128_via_u64(self) + } + + // As an optimization we try to write directly into the output buffer. + // This is only enabled for platforms where unaligned writes are known to + // be safe and fast. + // This improves performance by about 12%. + #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] + fn fill_bytes(&mut self, dest: &mut [u8]) { + let mut filled = 0; + + // Continue filling from the current set of results + if self.index < 16 { + let (consumed_u32, filled_u8) = + impls::fill_via_u32_chunks(&mut self.results[self.index..], + dest); + + self.index += consumed_u32; + filled += filled_u8; + } + + let len_remainder = (dest.len() - filled) % 16; + let len_direct = dest.len() - len_remainder; + + while filled < len_direct { + let dest_u32: &mut [u32] = unsafe { + slice::from_raw_parts_mut( + dest[filled..].as_mut_ptr() as *mut u8 as *mut u32, + 16) + }; + self.state.update(dest_u32); + filled += 16 * 4; + } + self.index = 16; + + if len_remainder > 0 { + self.state.update(&mut self.results); + + let (consumed_u32, _) = + impls::fill_via_u32_chunks(&mut self.results, + &mut dest[filled..]); + + self.index = consumed_u32; + } + } + + #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))] + fn fill_bytes(&mut self, dest: &mut [u8]) { + let mut read_len = 0; + while read_len < dest.len() { + if self.index >= 16 { + self.state.update(&mut self.results); + self.index = 0 + } + + let (consumed_u32, filled_u8) = + impls::fill_via_u32_chunks(&mut self.results[self.index..], + dest); + + self.index += consumed_u32; + read_len += filled_u8; + } + } + + fn try_fill(&mut self, dest: &mut [u8]) -> Result<(), Error> { + Ok(self.fill_bytes(dest)) + } +} + +impl SeedFromRng for Hc128Rng { + fn from_rng(mut other: R) -> Result { + let mut seed = [0u32; 8]; + unsafe { + let ptr = seed.as_mut_ptr() as *mut u8; + let slice = slice::from_raw_parts_mut(ptr, 8 * 4); + other.try_fill(slice)?; + } + Ok(Hc128Rng::init(&seed)) + } +} + +impl SeedableRng for Hc128Rng { + type Seed = [u8; 32]; /* 128 bit key followed by 128 bit iv */ + fn from_seed(mut seed: Self::Seed) -> Self { + Hc128Rng::init(&le::convert_slice_32(&mut seed)) + } +} + +#[cfg(test)] +mod test { + use {Rng, SeedableRng}; + use super::Hc128Rng; + + #[test] + // Test vector 1 from the paper "The Stream Cipher HC-128" + fn test_hc128_true_values_a() { + let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + + let v = (0..16).map(|_| rng.next_u32()).collect::>(); + assert_eq!(v, + vec!(0x73150082, 0x3bfd03a0, 0xfb2fd77f, 0xaa63af0e, + 0xde122fc6, 0xa7dc29b6, 0x62a68527, 0x8b75ec68, + 0x9036db1e, 0x81896005, 0x00ade078, 0x491fbf9a, + 0x1cdc3013, 0x6c3d6e24, 0x90f664b2, 0x9cd57102)); + } + + #[test] + // Test vector 2 from the paper "The Stream Cipher HC-128" + fn test_hc128_true_values_b() { + let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + + let v = (0..16).map(|_| rng.next_u32()).collect::>(); + assert_eq!(v, + vec!(0xc01893d5, 0xb7dbe958, 0x8f65ec98, 0x64176604, + 0x36fc6724, 0xc82c6eec, 0x1b1c38a7, 0xc9b42a95, + 0x323ef123, 0x0a6a908b, 0xce757b68, 0x9f14f7bb, + 0xe4cde011, 0xaeb5173f, 0x89608c94, 0xb5cf46ca)); + } + + #[test] + // Test vector 3 from the paper "The Stream Cipher HC-128" + fn test_hc128_true_values_c() { + let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + + let v = (0..16).map(|_| rng.next_u32()).collect::>(); + assert_eq!(v, + vec!(0x518251a4, 0x04b4930a, 0xb02af931, 0x0639f032, + 0xbcb4a47a, 0x5722480b, 0x2bf99f72, 0xcdc0e566, + 0x310f0c56, 0xd3cc83e8, 0x663db8ef, 0x62dfe07f, + 0x593e1790, 0xc5ceaa9c, 0xab03806f, 0xc9a6e5a0)); + } + + #[test] + fn test_hc128_true_values_u64() { + let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + + let v = (0..8).map(|_| rng.next_u64()).collect::>(); + assert_eq!(v, + vec!(0x3bfd03a073150082, 0xaa63af0efb2fd77f, + 0xa7dc29b6de122fc6, 0x8b75ec6862a68527, + 0x818960059036db1e, 0x491fbf9a00ade078, + 0x6c3d6e241cdc3013, 0x9cd5710290f664b2)); + + // The RNG operates in a P block of 512 results and next a Q block. + // After skipping 2*800 u32 results we end up somewhere in the Q block + // of the second round + for _ in 0..800 { rng.next_u64(); } + + let v = (0..8).map(|_| rng.next_u64()).collect::>(); + assert_eq!(v, + vec!(0xd8c4d6ca84d0fc10, 0xf16a5d91dc66e8e7, + 0xd800de5bc37a8653, 0x7bae1f88c0dfbb4c, + 0x3bfe1f374e6d4d14, 0x424b55676be3fa06, + 0xe3a1e8758cbff579, 0x417f7198c5652bcd)); + } + + #[test] + fn test_hc128_clone() { + let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng1 = Hc128Rng::from_seed(seed); + let mut rng2 = rng1.clone(); + for _ in 0..16 { + assert_eq!(rng1.next_u32(), rng2.next_u32()); + } + } +} diff --git a/src/prng/mod.rs b/src/prng/mod.rs index b2a2f95763b..25ffdc81c57 100644 --- a/src/prng/mod.rs +++ b/src/prng/mod.rs @@ -44,12 +44,14 @@ //! statistical properties, performance. mod chacha; +mod hc128; mod isaac; mod isaac64; mod isaac_word; mod xorshift; pub use self::chacha::ChaChaRng; +pub use self::hc128::Hc128Rng; pub use self::isaac::IsaacRng; pub use self::isaac64::Isaac64Rng; pub use self::isaac_word::IsaacWordRng; From 0ac7b86f4da01ef67d4e623d77ac51e532cbcb54 Mon Sep 17 00:00:00 2001 From: Paul Dicker Date: Thu, 14 Dec 2017 21:40:01 +0100 Subject: [PATCH 2/3] impl CryptoRng for Hc128Rng That is kind of the goal here :-) --- src/prng/hc128.rs | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/src/prng/hc128.rs b/src/prng/hc128.rs index d9683227d7b..09e0472331f 100644 --- a/src/prng/hc128.rs +++ b/src/prng/hc128.rs @@ -15,7 +15,7 @@ use core::slice; use rand_core::{impls, le}; -use {Rng, SeedFromRng, SeedableRng, Error}; +use {Rng, CryptoRng, SeedFromRng, SeedableRng, Error}; /// A cryptographically secure random number generator that uses the HC-128 /// algorithm. @@ -415,6 +415,8 @@ impl SeedableRng for Hc128Rng { } } +impl CryptoRng for Hc128Rng {} + #[cfg(test)] mod test { use {Rng, SeedableRng}; From b9f7123d1c2e91b136e17077a6d686e50a3bf686 Mon Sep 17 00:00:00 2001 From: Paul Dicker Date: Thu, 14 Dec 2017 21:40:35 +0100 Subject: [PATCH 3/3] Add test for `fill_bytes` --- src/prng/hc128.rs | 41 +++++++++++++++++++++++++++++++++++++++-- 1 file changed, 39 insertions(+), 2 deletions(-) diff --git a/src/prng/hc128.rs b/src/prng/hc128.rs index 09e0472331f..f50e27fc3d7 100644 --- a/src/prng/hc128.rs +++ b/src/prng/hc128.rs @@ -379,12 +379,12 @@ impl Rng for Hc128Rng { while read_len < dest.len() { if self.index >= 16 { self.state.update(&mut self.results); - self.index = 0 + self.index = 0; } let (consumed_u32, filled_u8) = impls::fill_via_u32_chunks(&mut self.results[self.index..], - dest); + &mut dest[read_len..]); self.index += consumed_u32; read_len += filled_u8; @@ -493,6 +493,43 @@ mod test { 0xe3a1e8758cbff579, 0x417f7198c5652bcd)); } + #[test] + fn test_hc128_true_values_bytes() { + let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + let expected = + vec!(0x31, 0xf9, 0x2a, 0xb0, 0x32, 0xf0, 0x39, 0x06, + 0x7a, 0xa4, 0xb4, 0xbc, 0x0b, 0x48, 0x22, 0x57, + 0x72, 0x9f, 0xf9, 0x2b, 0x66, 0xe5, 0xc0, 0xcd, + 0x56, 0x0c, 0x0f, 0x31, 0xe8, 0x83, 0xcc, 0xd3, + 0xef, 0xb8, 0x3d, 0x66, 0x7f, 0xe0, 0xdf, 0x62, + 0x90, 0x17, 0x3e, 0x59, 0x9c, 0xaa, 0xce, 0xc5, + 0x6f, 0x80, 0x03, 0xab, 0xa0, 0xe5, 0xa6, 0xc9, + 0x60, 0x95, 0x84, 0x7a, 0xa5, 0x68, 0x5a, 0x84, + 0xea, 0xd5, 0xf3, 0xea, 0x73, 0xa9, 0xad, 0x01, + 0x79, 0x7d, 0xbe, 0x9f, 0xea, 0xe3, 0xf9, 0x74, + 0x0e, 0xda, 0x2f, 0xa0, 0xe4, 0x7b, 0x4b, 0x1b, + 0xdd, 0x17, 0x69, 0x4a, 0xfe, 0x9f, 0x56, 0x95, + 0xad, 0x83, 0x6b, 0x9d, 0x60, 0xa1, 0x99, 0x96, + 0x90, 0x00, 0x66, 0x7f, 0xfa, 0x7e, 0x65, 0xe9, + 0xac, 0x8b, 0x92, 0x34, 0x77, 0xb4, 0x23, 0xd0, + 0xb9, 0xab, 0xb1, 0x47, 0x7d, 0x4a, 0x13, 0x0a); + + // Pick a somewhat large buffer so we can test filling with the + // remainder from `state.results`, directly filling the buffer, and + // filling the remainder of the buffer. + let mut buffer = vec!(0u8; 16*4*2); + // Consume a value the we have a remainder. + let _ = rng.next_u64(); + rng.fill_bytes(&mut buffer); + + for i in buffer.iter() { + print!("0x{:02x}, ", i); + } + assert_eq!(buffer, expected); + } + #[test] fn test_hc128_clone() { let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key