forked from Timilehin/Yoruba-Intonator
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
238 lines (194 loc) · 8.94 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""TODO - adapt this code to Yoruba corpus"""
import numpy as np
import theano
import theano.tensor as T
import lasagne
from collections import defaultdict
# import logging
from layers import PossibilitiesFilterLayer
from lasagne.layers import *
from text_featurizer import create_data, framify_features
from transformations import all_variants as poss
# from layers import BroadcastLayer, highway_dense
import os
import pdb
import sys
import time
import tqdm
BATCHSIZE = 32
WINDOW_SIZE = 5
should_train = False
MODELS_PATH = './models'
if not os.path.exists(MODELS_PATH):
os.mkdir(MODELS_PATH)
# logger = logging.getLogger('accuracy_log')
# word_classifiers = {}
# for eword in ewords:
# possibilities = poss(eword)
# featurizer = TextFeaturizer(possibilities)
# layer = DenseLayer()
# word_classifiers[eword] = (featurizer, layer)
def iterate_minibatches(inputs, targets, batchsize, shuffle=True):
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets[excerpt]
def train_valid_test_gen(inputs, targets, batchsize):
# Train-validation-test split
n = len(inputs)
inputs_train, targets_train = inputs[:int(0.8 * n)], targets[:int(0.8 * n)]
inputs_val, targets_val = inputs[int(0.8 * n):int(0.9 * n)], targets[int(0.8 * n):int(0.9 * n)]
inputs_test, targets_test = inputs[int(0.9 * n):], targets[int(0.9 * n):]
return (
iterate_minibatches(inputs_train, targets_train, batchsize),
iterate_minibatches(inputs_val, targets_val, batchsize),
iterate_minibatches(inputs_test, targets_test, batchsize)
)
def create_network(input_var, input_dim, output_dim):
l_inp = InputLayer(shape=(None, input_dim), input_var=input_var)
# Standardize input
# offset = input_var.min(axis=0)
# scale = input_var.max(axis=0) - input_var.min(axis=0)
# l_inp_std = standardize(l_inp, offset, scale, shared_axes=0)
l_dense_1 = DenseLayer(dropout(l_inp, 0.5), num_units=1024)
l_dense_2 = DenseLayer(dropout(l_dense_1, 0.5), num_units=1024)
l_dense_3_class = DenseLayer(dropout(l_dense_2, 0.5), num_units=output_dim, nonlinearity=lasagne.nonlinearities.softmax)
# base_feature_dim = input_dim / WINDOW_SIZE
# slice_start_ind = base_feature_dim * (WINDOW_SIZE / 2)
# l_inp_nocontext = SliceLayer(l_inp, slice(slice_start_ind, slice_start_ind + base_feature_dim), axis=1)
return l_dense_3_class
def filtering_network(probabilities, input_var_nocontext, possibilities, input_dim):
l_inp_nocontext = InputLayer(shape=(None, input_dim / WINDOW_SIZE), input_var=input_var_nocontext)
l_filter_poss = PossibilitiesFilterLayer(probabilities, l_inp_nocontext, possibilities)
return l_filter_poss
if __name__ == "__main__":
print("Loading data...")
from utils import download_file_unicode
slovenian_text = download_file_unicode('https://www.gutenberg.org/files/34126/34126-0.txt')
slovenian_text = slovenian_text.split('*** START OF THIS PROJECT')[1]
slovenian_text = slovenian_text.split('*** END OF THIS PROJECT')[0]
# pdb.set_trace()
inputs, targets, stripped, accented = create_data(slovenian_text, WINDOW_SIZE, True)
possibilities = defaultdict(set)
word_possibilities = defaultdict(set)
for s, a in zip(stripped.corpus, accented.corpus):
word_possibilities[s].add(a)
possibilities[stripped.w_to_i[s]].add(accented.w_to_i[a])
trv_split, vte_split = int(0.8 * len(inputs)), int(0.9 * len(inputs))
inputs_train, targets_train = inputs[:trv_split], targets[:trv_split]
inputs_val, targets_val = inputs[trv_split:vte_split], targets[trv_split:vte_split]
inputs_test, targets_test = inputs[vte_split:], targets[vte_split:]
input_var = T.matrix('inputs')
base_feature_dim = inputs.shape[1] / WINDOW_SIZE
slice_start_ind = base_feature_dim * (WINDOW_SIZE / 2)
input_var_nocontext = input_var[:,slice_start_ind:slice_start_ind + base_feature_dim]
target_var = T.matrix('targets')
sys.setrecursionlimit(50000)
print("Compiling...")
network = create_network(input_var, inputs.shape[1], targets.shape[1])
# Training functions
train_prediction = lasagne.layers.get_output(network)
train_loss = lasagne.objectives.categorical_crossentropy(train_prediction, target_var).mean()
train_acc = T.mean(T.eq(T.argmax(train_prediction, axis=1), T.argmax(target_var, axis=1)))
params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.adam(train_loss, params, learning_rate=0.01)
# Validation/Test Metrics
val_prediction = lasagne.layers.get_output(network, deterministic=True)
val_loss = lasagne.objectives.categorical_crossentropy(val_prediction, target_var).mean()
val_acc = T.mean(T.eq(T.argmax(val_prediction, axis=1), T.argmax(target_var, axis=1)))
# lexicon_filter_network = filtering_network(network, input_var_nocontext, possibilities, BATCHSIZE, inputs.shape[1])
# lexicon_filter_prediction = lasagne.layers.get_output(lexicon_filter_network, deterministic=True)
# lexicon_filter_acc = T.mean(T.eq(T.argmax(lexicon_filter_prediction, axis=1), T.argmax(target_var, axis=1)))
train_fn = theano.function([input_var, target_var], [train_prediction, train_loss, train_acc], updates=updates)
val_fn = theano.function([input_var, target_var], [val_prediction, val_loss, val_acc])
print("...Done.")
# pdb.set_trace()
if should_train:
num_epochs = 5
for epoch in range(num_epochs):
# train_gen, val_gen, test_gen = train_valid_test_gen(inputs, targets, BATCHSIZE)
print("Epoch {0}. Training...".format(epoch + 1))
# In each epoch, we do a full pass over the training data:
train_err = 0
train_acc = 0
train_batches = 0
start_time = time.time()
for batch in tqdm.tqdm(iterate_minibatches(inputs_train, targets_train, BATCHSIZE)):
inputs, targets = batch
_, err, acc = train_fn(inputs, targets)
train_err += err
train_acc += acc
# logger.info(acc)
train_batches += 1
if train_batches % 50 == 0:
print(train_acc / float(train_batches))
print("Validating...")
# And a full pass over the validation data:
val_err = 0
val_acc = 0
val_lex_acc = 0
val_batches = 0
for batch in tqdm.tqdm(iterate_minibatches(inputs_val, targets_val, BATCHSIZE)):
inputs, targets = batch
_, err, acc = val_fn(inputs, targets)
val_err += err
val_batches += 1
if val_batches % 50 == 0:
print(" validation accuracy:\t\t{:.2f} %".format(
val_acc / val_batches * 100))
print(" validation lexicon accuracy:\t\t{:.2f} %".format(
val_lex_acc / val_batches * 100))
# Then we print the results for this epoch:
print("Epoch {} of {} took {:.3f}s".format(
epoch + 1, num_epochs, time.time() - start_time))
print(" training loss:\t\t{:.6f}".format(train_err / train_batches))
print(" training accuracy:\t\t{:.2f} %".format(
train_acc / train_batches * 100))
print(" validation loss:\t\t{:.6f}".format(val_err / val_batches))
print(" validation accuracy:\t\t{:.2f} %".format(
val_acc / val_batches * 100))
print(" validation lexicon accuracy:\t\t{:.2f} %".format(
val_lex_acc / val_batches * 100))
# Save the model weights
np.savez(os.path.join(MODELS_PATH, 'model_{0}_val_acc_{1}.npz'.format(epoch, val_acc)), *lasagne.layers.get_all_param_values(network))
else:
with np.load(os.path.join(MODELS_PATH, 'model_2_val_acc_0.npz')) as f:
param_values = [f['arr_%d' % i] for i in range(len(f.files))]
lasagne.layers.set_all_param_values(network, param_values)
# After training, we compute and print the test error:
test_err = 0
test_acc = 0
# test_lex_acc = 0
test_batches = 0
for batch in iterate_minibatches(inputs_test, targets_test, BATCHSIZE, shuffle=False):
inputs, targets = batch
_, err, acc = val_fn(inputs, targets)
test_err += err
test_acc += acc
test_batches += 1
print("Final results:")
print(" test loss:\t\t\t{:.6f}".format(test_err / test_batches))
print(" test accuracy:\t\t{:.2f} %".format(
test_acc / test_batches * 100))
# print(" test accuracy with lexicon:\t\t{:.2f} %".format(
# test_lex_acc / test_batches * 100))
# We now incorporate the lexicon.
stripped_r, accented_r, inputs_test_r, targets_test_r = stripped.corpus[WINDOW_SIZE/2:1000 + (WINDOW_SIZE/2)], accented.corpus[WINDOW_SIZE/2:1000 + (WINDOW_SIZE/2)], inputs_test[:1000], targets_test[:1000]
preds_r, err_r, acc_r = val_fn(inputs_test_r, targets_test_r)
word_lex_preds = []
for ind, word in enumerate(stripped_r):
posses = list(word_possibilities[word])
if len(posses) > 1:
# pdb.set_trace()
indices = [accented.w_to_i[a] for a in posses]
heighest_weighted_word = posses[np.argmax(preds_r[ind, indices])]
word_lex_preds.append(heighest_weighted_word)
else:
word_lex_preds.append(posses[0])
print('Test with lex accuracy: {0}'.format(sum([1.0 if p == a else 0.0 for p, a in zip(word_lex_preds, accented_r)]) / len(word_lex_preds)))