-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrender_network_real.py
119 lines (92 loc) · 4.89 KB
/
render_network_real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import argparse
import numpy as np
import os
import random
import tensorboardX
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam
from torch.utils.data import DataLoader
from tqdm import tqdm
import config
from dataset.uv_dataset import UVDatasetSH, UVDatasetSHEvalReal
from model.pipeline import PipeLineSH
from model.pipeline_new import PipeLine
import cv2
import external_sh_func as esh
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--texturew', type=int, default=config.TEXTURE_W)
parser.add_argument('--textureh', type=int, default=config.TEXTURE_H)
parser.add_argument('--texture_dim', type=int, default=config.TEXTURE_DIM)
parser.add_argument('--use_pyramid', type=bool, default=config.USE_PYRAMID)
parser.add_argument('--view_direction', type=bool, default=config.VIEW_DIRECTION)
parser.add_argument('--data', type=str, default=config.DATA_DIR, help='directory to data')
parser.add_argument('--lif_checkpoint', type=str, default=config.CHECKPOINT_DIR, help='directory to save checkpoint')
parser.add_argument('--mask_checkpoint', type=str, default=config.CHECKPOINT_DIR, help='directory to save checkpoint')
parser.add_argument('--logdir', type=str, default=config.LOG_DIR, help='directory to save checkpoint')
parser.add_argument('--train', default=config.TRAIN_SET)
parser.add_argument('--epoch', type=int, default=config.EPOCH)
parser.add_argument('--cropw', type=int, default=config.CROP_W)
parser.add_argument('--croph', type=int, default=config.CROP_H)
parser.add_argument('--batch', type=int, default=config.BATCH_SIZE)
parser.add_argument('--lr', type=float, default=config.LEARNING_RATE)
parser.add_argument('--betas', type=str, default=config.BETAS)
parser.add_argument('--l2', type=str, default=config.L2_WEIGHT_DECAY)
parser.add_argument('--eps', type=float, default=config.EPS)
parser.add_argument('--load', type=str, default=config.LOAD)
parser.add_argument('--load_step', type=int, default=config.LOAD_STEP)
parser.add_argument('--epoch_per_checkpoint', type=int, default=config.EPOCH_PER_CHECKPOINT)
parser.add_argument('--output_dir', type=str, default='')
parser.add_argument('--pixel_x', type=int, default=0)
parser.add_argument('--pixel_y', type=int, default=0)
args = parser.parse_args()
dataset = UVDatasetSHEvalReal(args.data, args.train, args.croph, args.cropw, args.view_direction)
dataloader = DataLoader(dataset, batch_size=4, shuffle=False, num_workers=4)
os.makedirs(args.output_dir,exist_ok=True)
model_lif = torch.load(args.lif_checkpoint)
model_lif = model_lif.to('cuda')
model_lif.eval()
model_mask = torch.load(args.mask_checkpoint)
model_mask = model_mask.to('cuda')
model_mask.eval()
torch.set_grad_enabled(False)
iidx = 0
for idx, samples in enumerate(tqdm(dataloader)):
# print(idx)
images, uv_maps, extrinsics, gt_masks, sh, forward = samples
RGB_texture_lif, preds = model_lif(uv_maps.cuda(), extrinsics.cuda())
RGB_texture_masks, masks = model_mask(uv_maps.cuda(), extrinsics.cuda())
mask_sigmoid = nn.Sigmoid()(masks)
mask_sigmoid[mask_sigmoid >= 0.5] = 1
mask_sigmoid[mask_sigmoid <0.5 ] = 0
sh = sh.view(-1, 9, 3, sh.shape[2], sh.shape[3])
preds = preds.view(-1, 9, 3, preds.shape[2], preds.shape[3])
preds = preds * sh.cuda()
preds_final = torch.sum(preds, dim=1, keepdim=False)
preds_final = torch.clamp(preds_final, 0, 1)
preds_final *= mask_sigmoid
preds_final = preds_final.clamp(0, 1)
mask_sigmoid = mask_sigmoid.cpu().numpy()
gt_masks = gt_masks.cpu().numpy()
for j in range(0, preds_final.shape[0]):
output = np.clip(preds_final[j, :, :, :].detach().cpu().numpy(), 0, 1) ** (1.0/2.2)
output = output * 255.0
output = output.astype(np.uint8)
output = np.transpose(output, (1, 2, 0))
gt = np.clip(images[j, :, :, :].detach().cpu().numpy(), 0, 1) ** (1.0/2.2)
gt *= gt_masks[j, :, :, :]
gt = gt * 255.0
gt = gt.astype(np.uint8)
gt = np.transpose(gt, (1, 2, 0))
for_rend = np.clip(forward[j, :, :, :].cpu().numpy(), 0, 1) ** (1.0/2.2)
for_rend *= mask_sigmoid[j, :, :, :]
for_rend = for_rend * 255.0
for_rend = for_rend.astype(np.uint8)
for_rend = np.transpose(for_rend, (1, 2, 0))
cv2.imwrite(args.output_dir+'/%s_output.png' % str(iidx).zfill(5), cv2.cvtColor(output, cv2.COLOR_RGB2BGR))
cv2.imwrite(args.output_dir+'/%s_gt.png' % str(iidx).zfill(5), cv2.cvtColor(gt, cv2.COLOR_RGB2BGR))
cv2.imwrite(args.output_dir+'/%s_forward.png' % str(iidx).zfill(5), cv2.cvtColor(for_rend, cv2.COLOR_RGB2BGR))
iidx += 1