-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_NN.py
226 lines (190 loc) · 8.13 KB
/
training_NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import matplotlib.image as mpimg
import numpy as np
import matplotlib.pyplot as plt
import os,sys
from PIL import Image
from tqdm import tqdm
from scipy import ndimage
import torch.nn.functional as F
import torch as tc
from helpers_img import *
from dataset import *
def train_model_Adam( model, train_data, label, max_epochs, lr, mini_batch_size, threshold=0.01):
'''train the Neural Net using Adam as optimizer and an MSE loss'''
optimizer=tc.optim.Adam(model.parameters(),lr)
criterion= tc.nn.MSELoss()
training_errors=[]
if tc.cuda.is_available():
tc.cuda.empty_cache()
model.cuda()
train_data = train_data.cuda()
for epoch in tqdm(range(max_epochs)):
model.is_training=True
model.train()
if tc.cuda.is_available():
tc.cuda.empty_cache()
for i in range(0,train_data.size(0),mini_batch_size):
output= model(train_data.narrow(0,i,mini_batch_size))
temp=tc.FloatTensor(np.array([1*label[i:i+mini_batch_size]]).reshape(-1,1))
temp = temp.cuda()
loss= criterion(output,temp)
model.zero_grad()
loss.backward()
optimizer.step()
# compute training error
model.is_training=False
model.eval()
test = model(train_data)
test = test.cpu()
prediction= test[:]>0.5
prediction= 1*(prediction.numpy()[:] != label.reshape(-1,1)[:])
training_error = np.sum(prediction)/len(prediction)
training_errors.append(training_error*100)
if training_error< threshold:
break
plt.figure()
plt.plot(np.arange(epoch+1)+1,training_errors)
plt.xlabel('epoch')
plt.ylabel('error [%]')
plt.show()
model.cpu()
def train_SimpleNet(dataset, label, w, h, lr, max_epochs, mini_batch_size, dropout):
''' Train a simple net'''
n = len(dataset)
train_sub_images = [img_crop(dataset[i], w, h) for i in range(n)]
train_mask_label = [img_crop(label[i],w,h) for i in range(n)]
train_mask_label = from_mask_to_vector(train_mask_label,0.3)
train_sub_images = transform_subIMG_to_Tensor(train_sub_images)
mean = train_sub_images.mean()
std = train_sub_images.std()
train_sub_images = (train_sub_images-mean)/std
train_sub_images, train_mask_label = reduce_dataset(train_sub_images,train_mask_label)
# shuffle images
for l in range(10):
new_indices= np.random.permutation(len(train_mask_label))
train_sub_images=train_sub_images[new_indices]
train_mask_label=train_mask_label[new_indices]
model = SimpleNet(dropout)
mini_batch_rest = train_sub_images.size(0) % mini_batch_size
if mini_batch_rest > 0:
train_sub_images = train_sub_images.narrow(0,0,train_sub_images.size(0)-mini_batch_rest)
train_mask_label = train_mask_label[0:train_sub_images.size(0)]
train_model_Adam( model, train_sub_images, train_mask_label, max_epochs, lr, mini_batch_size)
return model
def train_UNet(training_directory, lr, max_epochs, mini_batch_size, nb_test, threshold=0.5,
do_preprocessing = False, flip_data=True, model=None, model_path = 'Model_UNet/model_CPU.pt'):
''' train the UNet using the Binary Cross Entropy loss and Adam as optimizer.
The dataset must be a list of 400*400 images.'''
dataset = DatasetUNet(training_directory, bound=(0,-nb_test) ,do_flip=flip_data,
do_prep= do_preprocessing,
noise=True, is_simple_noise = True, rot = True, normalize = True)
N = dataset.__len__()+ nb_test
test_set = DatasetUNet(training_directory, bound=(N-nb_test,N) ,do_flip=False,
do_prep= do_preprocessing,
noise=False, is_simple_noise = False, rot = False, normalize = True)
train_load = tc.utils.data.DataLoader(dataset,batch_size= mini_batch_size)
test_load = tc.utils.data.DataLoader(test_set,batch_size=nb_test)
if model == None:
model = UNet(features= dataset.get_features())
optimizer=tc.optim.Adam(model.parameters(),lr)
# maybe using MSE is better
#criterion= tc.nn.BCELoss()
criterion = tc.nn.MSELoss()
training_errors=[]
losses=[]
if tc.cuda.is_available():
print('cuda is available')
model.cuda()
#criterion.cuda()
#dataset= dataset.cuda()
#label = label.cuda()
#training_F1_error=[]
#print('starting to train the net')
for epoch in tqdm(range(max_epochs)):
model.train()
#if tc.cuda.is_available():
# model.cuda()
for input_data, label_data in train_load:
input_data = input_data.view(dataset.get_mini()*mini_batch_size,dataset.get_features(),400,400)
label_data = label_data.view(dataset.get_mini()*mini_batch_size,1,400,400)
if tc.cuda.is_available():
input_data, label_data = input_data.cuda(), label_data.cuda()
output = model(input_data)
#print(output, label_data)
loss = criterion(output, label_data)
model.zero_grad()
loss.backward()
optimizer.step()
tc.cuda.empty_cache()
# compute training error
model.eval()
losses.append(loss)
for test,mask in test_load:
test = test.view(test_set.get_mini()*nb_test,test_set.get_features(),400,400)
mask = mask.view(test_set.get_mini()*nb_test,1,400,400)
if tc.cuda.is_available():
test = test.cuda()
prediction = model(test)
prediction = prediction.cpu()
prediction = prediction.detach_().numpy()[:,0,:,:]
prediction = (prediction > threshold)*1
#print(prediction[0])
mask = mask.numpy()[:,0,:,:]
F1_error = 0
#print(mask.shape)
training_error = (((mask>0.5)*1 == prediction)*1).sum()/np.prod(prediction.shape)
training_errors.append(training_error)
model.cpu()
tc.save(model,model_path)
plt.figure()
plt.plot(np.arange(epoch + 1)+1,losses)
plt.xlabel('epoch')
plt.ylabel('loss')
try:
plt.figure()
plt.plot(np.arange(epoch + 1)+1,training_errors)
plt.xlabel('epoch')
plt.ylabel('accuracy')
except:
print(training_errors)
return model
def train_model_Adam_v2( model, dataset, max_epochs, lr, mini_batch_size, w=48, h=48, features=3, threshold=0.01):
'''train the Neural Net using Adam as optimizer and an binary cross entropy loss.
The function is written explicitly for the DeepNet.'''
train_loader = DataLoader(dataset,batch_size=mini_batch_size)
optimizer=tc.optim.Adam(model.parameters(),lr)
criterion= tc.nn.BCELoss()
losses=[]
training_errors = []
if tc.cuda.is_available():
model.cuda()
criterion.cuda()
for epoch in tqdm(range(max_epochs)):
model.is_training=True
model.train()
for train_data,label in train_loader:
train_data = train_data.view(-1,features,w,h)
label = label.view(-1,1).type(tc.FloatTensor)
if tc.cuda.is_available():
train_data = train_data.cuda()
label = label.cuda()
output= model(train_data).view(-1,1)
#print(output,tc.LongTensor(np.array([1*label[i:i+mini_batch_size]]).reshape(-1,1)))
loss= criterion(output,label)
model.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss)
plt.figure()
plt.plot(np.arange(epoch+1)+1,losses)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()
model.cpu()
return model
def trainDeepNet(root_dir, max_epochs, lr, mini_batch_size, dropout=0, model = None):
if model == None:
model = DeepNet(dropout)
dataset = DatasetDeepNet(root_dir, do_flip=True, do_rotation=True,do_train=False)
model = train_model_Adam_v2( model, dataset, max_epochs, lr, mini_batch_size)
return model