-
Notifications
You must be signed in to change notification settings - Fork 42
/
plot2dkm.m
executable file
·67 lines (54 loc) · 1.79 KB
/
plot2dkm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
% PLOT2DKM - For a 2-D binary classification problem, plot2dkm plots the data,
% the margin and error vectors and contours of constant margin
% for the SVM classifier in memory.
%
% Syntax: plot2dkm
%
% Version 3.22e -- Comments to [email protected]
%
function plot2dkm
% flags for example state
MARGIN = 1;
ERROR = 2;
RESERVE = 3;
UNLEARNED = 4;
% define global variables
global ind; % cell array containing indices of margin, error, reserve and unlearned vectors
global X; % matrix of margin, error, reserve and unlearned vectors stored columnwise
global y; % column vector of class labels (-1/+1) for margin, error, reserve and unlearned vectors
% plot examples with label -1
figure;
indn1 = find(y == -1);
scatter(X(1,indn1),X(2,indn1),40,'b','filled');
hold on;
% plot examples with label +1
ind1 = find(y == 1);
scatter(X(1,ind1),X(2,ind1),40,'r');
% plot margin vectors
scatter(X(1,ind{MARGIN}),X(2,ind{MARGIN}),120,'k');
scatter(X(1,ind{MARGIN}),X(2,ind{MARGIN}),150,'k');
scatter(X(1,ind{MARGIN}),X(2,ind{MARGIN}),200,'k');
% plot error vectors
scatter(X(1,ind{ERROR}),X(2,ind{ERROR}),120,'k');
scatter(X(1,ind{ERROR}),X(2,ind{ERROR}),150,'k');
scatter(X(1,ind{ERROR}),X(2,ind{ERROR}),200,'k');
scatter(X(1,ind{ERROR}),X(2,ind{ERROR}),120,'k','x');
scatter(X(1,ind{ERROR}),X(2,ind{ERROR}),150,'k','x');
scatter(X(1,ind{ERROR}),X(2,ind{ERROR}),200,'k','x');
% draw margin band
xl = xlim;
yl = ylim;
pd = min(xl(2)-xl(1),yl(2)-yl(1))/100;
x_range = xl(1):pd:xl(2);
y_range = yl(1):pd:yl(2);
f = zeros(length(y_range),length(x_range));
i = 1;
for xp = x_range
j = 1;
for yp = y_range
f(j,i) = svmeval([xp ; yp]);
j = j + 1;
end;
i = i + 1;
end;
contour(x_range,y_range,f,[-1 1]);