-
Notifications
You must be signed in to change notification settings - Fork 42
/
svmtrain2.m
executable file
·303 lines (252 loc) · 9.88 KB
/
svmtrain2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
% SVMTRAIN2 - Trains a support vector machine in batch mode
% using the L1 soft margin approach developed by
% Diehl and Cauwenberghs for two-class problems.
%
% Syntax: [a,b,g,ind,uind,X_mer,y_mer,Rs,Q] = svmtrain2(X,y,C,type,scale)
% [a,b,g,ind,uind,X_mer,y_mer,Rs,Q] = svmtrain2(X,y,C,type,scale,uind)
% (trains a new SVM on the given examples)
%
% [a,b,g,ind,uind,X_mer,y_mer,Rs,Q] = svmtrain2(X,y,C)
% [a,b,g,ind,uind,X_mer,y_mer,Rs,Q] = svmtrain2(X,y,C,uind)
% (trains the current SVM in memory on the given examples)
%
% a: alpha coefficients
% b: bias
% g: partial derivatives of cost function w.r.t. alpha coefficients
% ind: cell array containing indices of margin, error and reserve vectors
% ind{1}: indices of margin vectors
% ind{2}: indices of error vectors
% ind{3}: indices of reserve vectors
% uind: column vector of user-defined example indices (used for unlearning specified examples)
% X_mer: matrix of margin, error and reserve vectors stored columnwise
% y_mer: column vector of class labels (-1/+1) for margin, error and reserve vectors
% Rs: inverse of extended kernel matrix for margin vectors
% Q: extended kernel matrix for all vectors
% X: matrix of training vectors stored columnwise
% y: column vector of class labels (-1/+1) for training vectors
% C: soft-margin regularization parameter(s)
% dimensionality of C assumption
% 1-dimensional vector universal regularization parameter
% 2-dimensional vector class-conditional regularization parameters (-1/+1)
% n-dimensional vector regularization parameter per example
% (where n = # of examples)
% type: kernel type
% 1: linear kernel K(x,y) = x'*y
% 2-4: polynomial kernel K(x,y) = (scale*x'*y + 1)^type
% 5: Gaussian kernel with variance 1/(2*scale)
% scale: kernel scale
%
% Version 3.22e -- Comments to [email protected]
%
function [a,b,g,ind,uind,X,y,Rs,Q] = svmtrain2(X_new,y_new,C_new,varargin)
% flags for example state
MARGIN = 1;
ERROR = 2;
RESERVE = 3;
UNLEARNED = 4;
% create a vector containing the regularization parameter
% for each example if necessary
if (length(C_new) == 1) % same regularization parameter for all examples
C_new = C_new*ones(size(y_new));
elseif (length(C_new) == 2) % class-conditional regularization parameters
flags = (y_new == -1);
C_new = C_new(1)*flags + C_new(2)*(~flags);
end;
if (nargin >= 5)
% define arguments
type_new = varargin{1};
scale_new = varargin{2};
if (nargin == 6)
uind_new = varargin(3);
else
uind_new = zeros(size(y_new));
end;
new_model = 1;
else
% define arguments
if (nargin == 4)
uind_new = varargin(1);
else
uind_new = zeros(size(y_new));
end;
new_model = 0;
end;
% define global variables
global a; % alpha coefficients
global b; % bias
global C; % regularization parameters
global deps; % jitter factor in kernel matrix
global g; % partial derivatives of cost function w.r.t. alpha coefficients
global ind; % cell array containing indices of margin, error, reserve and unlearned vectors
global kernel_evals; % kernel evaluations
global max_reserve_vectors; % maximum number of reserve vectors stored
global perturbations; % number of perturbations
global Q; % extended kernel matrix for all vectors
global Rs; % inverse of extended kernel matrix for margin vectors
global scale; % kernel scale
global type; % kernel type
global uind; % user-defined example indices
global X; % matrix of margin, error, reserve and unlearned vectors stored columnwise
global y; % column vector of class labels (-1/+1) for margin, error, reserve and unlearned vectors
% initialize variables
deps = 1e-5;
max_reserve_vectors = 3000;
if (new_model)
num_examples = size(X_new,2);
a = zeros(num_examples,1);
b = 0;
C = C_new;
g = -ones(num_examples,1);
ind = cell(4,1);
ind{UNLEARNED} = 1:num_examples;
kernel_evals = 0;
perturbations = 0;
Q = y_new';
Rs = Inf;
scale = scale_new;
type = type_new;
uind = uind_new;
X = X_new;
y = y_new;
else
num_examples = size(X,2);
num_new_examples = size(X_new,2);
a = [a ; zeros(num_new_examples,1)];
C = [C ; C_new];
g_new = y_new.*svmeval(X_new) - 1;
g = [g ; g_new];
flag = (g_new > 0);
indr = find(flag)';
indu = find(~flag)';
move_indr([],indr+num_examples);
ind{UNLEARNED} = indu+num_examples;
% assumes currently that there are no duplicate examples in the data - may not necessarily be true!
if (length(ind{MARGIN}) > 0)
Q_new = [y_new' ; (y(ind{MARGIN})*y_new').*kernel(X(:,ind{MARGIN}),X_new,type,scale)];
else
Q_new = y_new';
end;
Q = [Q Q_new];
uind = [uind ; uind_new];
X = [X X_new];
y = [y ; y_new];
num_examples = num_examples + num_new_examples;
end;
% perturbation coefficients
lambda = zeros(num_examples,1);
lambda(ind{UNLEARNED}) = C(ind{UNLEARNED});
% cached results
disp('Precomputing results for unlearned vectors.');
SQl = ((y*y(ind{UNLEARNED})').*kernel(X,X(:,ind{UNLEARNED}),type,scale))*lambda(ind{UNLEARNED}) + deps*lambda;
Syl = y(ind{UNLEARNED})'*lambda(ind{UNLEARNED});
p = 0;
num_MVs = length(ind{MARGIN});
num_learned = 0;
disp('Beginning training.');
i = 0;
while ((p < 1) | (length(ind{UNLEARNED}) > 0))
if (p < 1)
perturbations = perturbations + 1;
% compute beta and gamma
if (num_MVs > 0)
v = zeros(num_MVs+1,1);
if (p < 1-eps)
v(1) = -Syl - sum(y.*a)/(1-p);
else
v(1) = -Syl;
end;
v(2:num_MVs+1) = -SQl(ind{MARGIN});
beta = Rs*v;
gamma = zeros(size(Q,2),1);
ind_temp = [ind{ERROR} ind{RESERVE} ind{UNLEARNED}];
if (length(ind_temp) > 0)
gamma(ind_temp) = Q(:,ind_temp)'*beta + SQl(ind_temp);
end;
else
beta = 0;
gamma = SQl;
end;
% minimum acceptable parameter change
[min_delta_p,indss,cstatus,nstatus] = min_delta_p_s(p,gamma,beta,lambda);
% update a, b, g and p
if (length(ind{UNLEARNED}) > 0)
a(ind{UNLEARNED}) = a(ind{UNLEARNED}) + lambda(ind{UNLEARNED})*min_delta_p;
end;
if (num_MVs > 0)
a(ind{MARGIN}) = a(ind{MARGIN}) + beta(2:num_MVs+1)*min_delta_p;
end;
b = b + beta(1)*min_delta_p;
g = g + gamma*min_delta_p;
p = p + min_delta_p;
% perform bookkeeping
indco = bookkeeping(indss,cstatus,nstatus);
% update Rs and Q if necessary
if (nstatus == MARGIN)
num_MVs = num_MVs + 1;
if (num_MVs > 1)
% compute beta and gamma for indss
beta = -Rs*Q(:,indss);
gamma = kernel(X(:,indss),X(:,indss),type,scale) + deps + Q(:,indss)'*beta;
end;
% expand Rs and Q
updateRQ(beta,gamma,indss);
elseif (cstatus == MARGIN)
% compress Rs and Q
num_MVs = num_MVs - 1;
updateRQ(indco);
end;
% update SQl and Syl when the current status of indss is UNLEARNED
if (cstatus == UNLEARNED)
num_learned = num_learned + 1;
if (nstatus == MARGIN)
SQl = SQl - Q(num_MVs+1,:)'*lambda(indss);
else
SQl = SQl - ((y*y(indss)).*kernel(X,X(:,indss),type,scale))*lambda(indss);
SQl(indss) = SQl(indss) - deps*lambda(indss);
end;
Syl = Syl - y(indss)*lambda(indss);
if (mod(num_learned,50) == 0)
s = sprintf('Learned %d examples.',num_learned);
disp(s);
end;
end;
else
% label the remaining unlearned vectors as error vectors
num_learned = num_learned + length(ind{UNLEARNED});
a(ind{UNLEARNED}) = C(ind{UNLEARNED});
[ind{UNLEARNED},ind{ERROR}] = move_ind(ind{UNLEARNED},ind{ERROR},ind{UNLEARNED});
if (mod(num_learned,50) == 0)
s = sprintf('Learned %d examples.',num_learned);
disp(s);
end;
end;
end;
if (mod(num_learned,50) ~= 0)
s = sprintf('Learned %d examples.',num_learned);
disp(s);
end;
disp('Training complete!');
% set g(ind{MARGIN}) to zero
g(ind{MARGIN}) = 0;
% remove all but the closest reserve vectors from the dataset if necessary
if (length(ind{RESERVE}) == max_reserve_vectors)
ind_keep = [ind{MARGIN} ind{ERROR} ind{RESERVE}];
X = X(:,ind_keep);
y = y(ind_keep);
a = a(ind_keep);
g = g(ind_keep);
Q = Q(:,ind_keep);
uind = uind(ind_keep);
ind{MARGIN} = 1:length(ind{MARGIN});
ind{ERROR} = length(ind{MARGIN}) + (1:length(ind{ERROR}));
ind{RESERVE} = length(ind{MARGIN}) + length(ind{ERROR}) + (1:length(ind{RESERVE}));
end;
% summary statistics
s = sprintf('\nMargin vectors:\t\t%d',length(ind{MARGIN}));
disp(s);
s = sprintf('Error vectors:\t\t%d',length(ind{ERROR}));
disp(s);
s = sprintf('Reserve vectors:\t%d',length(ind{RESERVE}));
disp(s);
s = sprintf('Kernel evaluations:\t%d\n',kevals);
disp(s);