-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathghost_tile.cpp
263 lines (208 loc) · 7.64 KB
/
ghost_tile.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
//-005
inline int32
GetBoard(level *Lvl, v2 Pos)
{
int32 Result = -1;
int32 PosX = TruncateReal32ToInt32(Pos.X);
int32 PosY = TruncateReal32ToInt32(Pos.Y);
for(uint32 BoardIndex = 0; BoardIndex < ArrayCount(Lvl->Board); ++BoardIndex)
{
if((PosX >= Lvl->Board[BoardIndex].MinLevel.X) &&
(PosY >= Lvl->Board[BoardIndex].MinLevel.Y) &&
(PosX <= Lvl->Board[BoardIndex].MaxLevel.X) &&
(PosY <= Lvl->Board[BoardIndex].MaxLevel.Y))
{
Result = BoardIndex;
break;
}
}
return(Result);
}
//006
inline int32
GetPointID(level *Lvl, v2 Pos)
{
int32 Result;
int32 X = TruncateReal32ToInt32(Pos.X) % 16;
int32 Y = TruncateReal32ToInt32(Pos.Y) % 9;
int32 BoardIndex = GetBoard(Lvl, Pos);
int32 TileValue = Lvl->Board[BoardIndex].TileArray[((8 - Y) * 16) + X];
Result = TileValue ;
// TileArray[] to TileArray[-16]?
// Should be 0 to 143.
// TileArray[y][x] == TileArray[y*xcount + x]
// If uint32 TA[8][15], then TA[4][2] is the highest value in that array
// AKA TA[4*3 + 2] = 14
// AKA TA[8*16 + 15] =
// and you would access these tiles by saying
return(Result);
}
/*inline tile_chunk *
GetTileChunk(tile_map *TileMap, uint32 TileChunkX, uint32 TileChunkY, uint32 TileChunkZ)
{
tile_chunk *TileChunk = 0;
if((TileChunkX >= 0) && (TileChunkX < TileMap->TileChunkCountX) &&
(TileChunkY >= 0) && (TileChunkY < TileMap->TileChunkCountY) &&
(TileChunkZ >= 0) && (TileChunkZ < TileMap->TileChunkCountZ))
{
TileChunk = &TileMap->TileChunks[
TileChunkZ*TileMap->TileChunkCountY*TileMap->TileChunkCountX +
TileChunkY*TileMap->TileChunkCountX +
TileChunkX];
}
return(TileChunk);
}
inline uint32
GetTileValueUnchecked(tile_map *TileMap, tile_chunk *TileChunk, uint32 TileX, uint32 TileY)
{
Assert(TileChunk);
Assert(TileX < TileMap->ChunkDim);
Assert(TileY < TileMap->ChunkDim);
uint32 TileChunkValue = TileChunk->Tiles[TileY*TileMap->ChunkDim + TileX];
return(TileChunkValue);
}
inline void
SetTileValueUnchecked(tile_map *TileMap, tile_chunk *TileChunk, uint32 TileX, uint32 TileY,
uint32 TileValue)
{
Assert(TileChunk);
Assert(TileX < TileMap->ChunkDim);
Assert(TileY < TileMap->ChunkDim);
TileChunk->Tiles[TileY*TileMap->ChunkDim + TileX] = TileValue;
}
inline uint32
GetTileValue(tile_map *TileMap, tile_chunk *TileChunk, uint32 TestTileX, uint32 TestTileY)
{
uint32 TileChunkValue = 0;
if(TileChunk && TileChunk->Tiles)
{
TileChunkValue = GetTileValueUnchecked(TileMap, TileChunk, TestTileX, TestTileY);
}
return(TileChunkValue);
}
inline void
SetTileValue(tile_map *TileMap, tile_chunk *TileChunk,
uint32 TestTileX, uint32 TestTileY, uint32 TileValue)
{
if(TileChunk && TileChunk->Tiles)
{
SetTileValueUnchecked(TileMap, TileChunk, TestTileX, TestTileY, TileValue);
}
}
inline tile_chunk_position
GetChunkPositionFor(tile_map *TileMap, uint32 AbsTileX, uint32 AbsTileY, uint32 AbsTileZ)
{
tile_chunk_position Result;
Result.TileChunkX = AbsTileX >> TileMap->ChunkShift;
Result.TileChunkY = AbsTileY >> TileMap->ChunkShift;
Result.TileChunkZ = AbsTileZ;
Result.RelTileX = AbsTileX & TileMap->ChunkMask;
Result.RelTileY = AbsTileY & TileMap->ChunkMask;
return(Result);
}
internal uint32
GetTileValue(tile_map *TileMap, uint32 AbsTileX, uint32 AbsTileY, uint32 AbsTileZ)
{
tile_chunk_position ChunkPos = GetChunkPositionFor(TileMap, AbsTileX, AbsTileY, AbsTileZ);
tile_chunk *TileChunk = GetTileChunk(TileMap, ChunkPos.TileChunkX, ChunkPos.TileChunkY, ChunkPos.TileChunkZ);
uint32 TileChunkValue = GetTileValue(TileMap, TileChunk, ChunkPos.RelTileX, ChunkPos.RelTileY);
return(TileChunkValue);
}
internal uint32
GetTileValue(tile_map *TileMap, tile_map_position Pos)
{
uint32 TileChunkValue = GetTileValue(TileMap, Pos.AbsTileX, Pos.AbsTileY, Pos.AbsTileZ);
return(TileChunkValue);
}
internal bool32
IsTileValueEmpty(uint32 TileValue)
{
bool32 Empty = ((TileValue == 1) ||
(TileValue == 3) ||
(TileValue == 4));
return(Empty);
}
internal bool32
IsTileMapPointEmpty(tile_map *TileMap, tile_map_position Pos)
{
uint32 TileChunkValue = GetTileValue(TileMap, Pos);
bool32 Empty = IsTileValueEmpty(TileChunkValue);
return(Empty);
}
internal void
SetTileValue(memory_arena *Arena, tile_map *TileMap,
uint32 AbsTileX, uint32 AbsTileY, uint32 AbsTileZ,
uint32 TileValue)
{
tile_chunk_position ChunkPos = GetChunkPositionFor(TileMap, AbsTileX, AbsTileY, AbsTileZ);
tile_chunk *TileChunk = GetTileChunk(TileMap, ChunkPos.TileChunkX, ChunkPos.TileChunkY, ChunkPos.TileChunkZ);
Assert(TileChunk);
if(!TileChunk->Tiles)
{
uint32 TileCount = TileMap->ChunkDim*TileMap->ChunkDim;
TileChunk->Tiles = PushArray(Arena, TileCount, uint32);
for(uint32 TileIndex = 0;
TileIndex < TileCount;
++TileIndex)
{
TileChunk->Tiles[TileIndex] = 1;
}
}
SetTileValue(TileMap, TileChunk, ChunkPos.RelTileX, ChunkPos.RelTileY, TileValue);
}
//
// TODO(casey): Do these really belong in more of a "positioning" or "geometry" file?
//
inline void
RecanonicalizeCoord(tile_map *TileMap, uint32 *Tile, real32 *TileRel)
{
// TODO(casey): Need to do something that doesn't use the divide/multiply method
// for recanonicalizing because this can end up rounding back on to the tile
// you just came from.
// NOTE(casey): TileMap is assumed to be toroidal topology, if you
// step off one end you come back on the other!
int32 Offset = RoundReal32ToInt32(*TileRel / TileMap->TileSideInMeters);
*Tile += Offset;
*TileRel -= Offset*TileMap->TileSideInMeters;
// TODO(casey): Fix floating point math so this can be < ?
Assert(*TileRel >= -0.5f*TileMap->TileSideInMeters);
Assert(*TileRel <= 0.5f*TileMap->TileSideInMeters);
}
inline tile_map_position
RecanonicalizePosition(tile_map *TileMap, tile_map_position Pos)
{
tile_map_position Result = Pos;
RecanonicalizeCoord(TileMap, &Result.AbsTileX, &Result.Offset.X);
RecanonicalizeCoord(TileMap, &Result.AbsTileY, &Result.Offset.Y);
return(Result);
}
inline bool32
AreOnSameTile(tile_map_position *A, tile_map_position *B)
{
bool32 Result = ((A->AbsTileX == B->AbsTileX) &&
(A->AbsTileY == B->AbsTileY) &&
(A->AbsTileZ == B->AbsTileZ));
return(Result);
}
inline tile_map_difference
Subtract(tile_map *TileMap, tile_map_position *A, tile_map_position *B)
{
tile_map_difference Result;
v2 dTileXY = {(real32)A->AbsTileX - (real32)B->AbsTileX,
(real32)A->AbsTileY - (real32)B->AbsTileY};
real32 dTileZ = (real32)A->AbsTileZ - (real32)B->AbsTileZ;
Result.dXY = TileMap->TileSideInMeters*dTileXY + (A->Offset - B->Offset);
// TODO(casey): Think about what we want to do about Z
Result.dZ = TileMap->TileSideInMeters*dTileZ;
return(Result);
}
inline tile_map_position
CenteredTilePoint(uint32 AbsTileX, uint32 AbsTileY, uint32 AbsTileZ)
{
tile_map_position Result = {};
Result.AbsTileX = AbsTileX;
Result.AbsTileY = AbsTileY;
Result.AbsTileZ = AbsTileZ;
return(Result);
}
*/