Skip to content

Latest commit

 

History

History
1386 lines (1210 loc) · 56.3 KB

muse-oii-permitted.org

File metadata and controls

1386 lines (1210 loc) · 56.3 KB

Permitted lines

  • Extract O II and C II lines from MUSE
  • For the O II lines, we need to isolate the 4649 blend
  • For C II pure recomb lines
    • We have 4620 supposedly ?!
      • Very weak and there may be another line at 4621
    • Also 4803 but blended with N II and [Co II]
    • 5342.40 - very weak
    • 6151.43 - might be good
    • 6461.96 - weak but should be clear
      • This is definitely the best bet for C II lines
      • Escalante:2012a have it being all recombination
      • Whereas 7231 and 7236 are 20 to 40% fluorescent in IC 418
  • N II lines
    • These are generally weak and must be a mixture of recombination and fluorescence
  • Si II lines
    • These are much stronger, also mixture
  • More O II lines from Manu/Adal
    • 4609, 4610 - Escalante:2012a says is 100% recombination
      • Terms are in LK coupling scheme
        • 3d 2D5/2–4f F[4]o7/2
        • 3d 2D3/2–4f F[2]o5/2
      • Unfortunately, there is an [Fe III] line at 4607
      • Also N II 4607 but that is weaker
      • 4607 to 4610 are blended in Manu and MUSE
      • The O II lines are well separated from [Fe III] in Adal
      • Discussed further below
    • 4596
  • [ ] Excitation of O II V1
    • Multiplet (quartet) is 3s ^4P → 3p ^4D
      • Storey:2017a has more rigorous terminology
      • But backwards: UPPER → LOWER
      • 2s2 2p2(.3P) 3p .4Do → 2s2 2p2(.3P) 3s .4Pe
      • 2s22p2(3P)3p 4Do - 2s22p2(3P)3s 4Pe
      • E.g., 4649.13 is index 8790
    • Ground state is 2p3 ^4S
      • Resonant absorption 2p3 ^4S → 3d ^4P (429.650 → 429.716 Å)
        • so that is 2.12 Rydbergs
      • Followed by decay to 3p terms
      • Need to make a diagram and work out if it is feasible
    • Velocity gradients in Big Arc will tend to make fluorescence more efficient
    • Interestingly, the analogous N I multiplet is at 8680-8719
      • N I and O II are identical in electron configuration
      • We see all these lines nicely in the MUSE data
      • They are all at least 95% fluoresced
      • [ ] We could look at the equivalent of the 3d-4f lines in N I
  • Case of the 3d-4f lines
    • These should not have a fluorescent component
      • except that maybe they might if intercombination lines are important
    • But they give the same abundances as the other lines (in Eduardo HH 529 data)
    • Strongest lines:
      • 4303.8: I ≈ 0.63e-4 Hb (Escalante:2013a)
        • Compare with 4649 ≈ 6.7e-4 Hb
          • ODell:2010a have 4959/Hb = 0.7 to 1.0 in slits 10 and 11, which cover area of Adal’s slit 6
          • Adal has 4649/4959 = 10 → 12 times 1e-4
          • Eduardo (cut 2) has I(4649.13) = 11.4 in nebula and 24 in shock !!
        • Eduardo 4959/Hb in cut 2
          • 1.15 in nebula
          • 1.67 in shock
        • Seen in Manu data - about 5 times weaker than 4317 and 4320 (3s ^4P - 3p ^4P)
          • Which are themselves about 4 times weaker than V1
          • E.g., Manu has 4649 = 1.13 x cont
          • I(4304) = 0.01 x cont, so 13 x weaker than 4649 => I(4304) = 0.77 1e-4 I(Hb)
          • Within the errors, this is consistent with Escalante predicted, especially if we add in the 4303.5 contribution: 0.09 + 0.63 = 0.72
        • Observed in Eduardo: I = 2.0 (cut 3) and 2.1 (cut 2 neb), and 4.6 (cut 2 shock) !!!
      • 4277 complex
        • Strongest component: 4275.5 with predicted I = 0.84
          • Blended with [Fe II] 4276.84 in Manu
          • Observed in Eduardo with observed I = 1.6
      • 4609.3: predicted I ≈ 0.66e-4 Hb (Escalante:2013a)
        • Also, weaker component at 4610.2
        • Seen in Manu, but blend with [Fe III] 4607
        • Very well isolated in Adal: I(4609) = 1e-4 I(4959)
        • So this has observed intensity that maybe is slightly higher than predicted (by about 30%)
  • What states can we have
    • 3 outer electrons
    • Ground state is 2p^3 ^4S
      • 2S+1 = 4 => S = 3/2 so all 3 spins are aligned
      • L=0 so J = 3/2
    • Pumped state: one electron goes from 2p → 3d
      • L = 0 → 1 for E1 transition so must be a ^4P state
      • In fact only ^4P levels can be directly pumped from ground
        • At least I would have thought, although Escalante also mention ^4S → ^4D transition, which has Δ L = 2, so must be quadrupole
      • So 2p^2 3d ^4P has L=1, S=3/2, J= 5/2, 3/2, 1/2
    • If we pump the 3d .4P level then we need the transition
      • 3d .4Pe → 3p .4Do in order to populate the upper level of V1
      • Storey has the following components:
        INDwav2JI2JFOtherManu
        84943864.1311Si II 3863Blend
        84933872.4413[Ne III] 3869
        85153874.0931He I 3878
        85143882.4533H I 3889?
        85663893.5253H I 3889
        85133896.3035faint
        85653907.4555yes
        85643926.5857He I 3927
      • Unfortunately, most will be blended with other lines
    • We should also get another route down via 3p .4S:
      • 3d .4Pe → 3p .4So followed by 3p .4So → 3s .4Pe
        • which ends at same lower level as V1
      • 3d .4Pe → 3p .4So or 2s22p2(3P)3d 4Pe - 2s22p2(3P)3p 4So
        INDwav2JI2JFOtherManuMUSEAdal
        84894890.8613[Fe II] 4890Blend?Blend?weak but resolved
        85074906.8333[Fe II] 4905Blend?BlendWeak
        85594924.5353He I 4922, [Fe III] 4925Blend?NoPossibly
      • 3p .4So → 3s .4Pe or 2s22p2(3P)3p 4So - 2s22p2(3P)3s 4Pe
        INDwav2JI2JFOtherManu
        87303712.7431H I 3712No
        87293727.3233[O II] 3726No
        87283749.4835H I 3750No
      • So this is the cursed multiplet - no chance of ever seeing it

The paper

Summary of the types of O II lines and what they tell us

  1. The singly-excited lines can be pumped by radiative recombination or fluorescence
    • The low-L quartet transitions might have a fluorescent contribution
      • The s-pumped multiplets (descendants of 4s ^4P)
        • 4s ^4P → 3p ^4D
        • include V1: 3p ^4D → 3s ^4P
      • The d-pumped multiplets (descendants of 3d ^4P and 3d ^4D)
        • 3d ^4P,D → 3p ^4P
        • 3p ^4P → 3s ^4P
      • Note that the d-pumped lines have a small s-pumping contribution and vice-versa
    • The high-L transitions should be pure recombination
      • They are described by LK coupling instead of LS coupling
      • mainly 4f D,F,G → 3d ^4P,D,F
    • The low-L doublet transitions can also have fluorescence (maybe)
  2. The core-excited lines are mainly dielectronic recombination
    • But Escalante:2012a say that could also be other routes (including fluorescence)
    • They are called with parentage other than ^3P in Fang:2013a
      • They all have parentage of ^1D
    • Assuming that they are from DR, they can give T diagnostics

The four types of O++ temperature

  1. T(CEL) : 4363 / 5007
    • Strongly biased to high-T
    • d R / d T > 0
  2. T(ORL-CEL) : V1 Sum / 4959
    • Mostly unbiased (slightly to high-T)
    • d R / d T < 0
    • R increases with fluorescence
    • => T decreases with fluorescence
  3. T(3d-4f) : V1 Sum / V48a Sum or 4649/4089
    • Biased to low-T
    • d R / d T > 0
    • R increases with fluorescence
    • => T increases with fluorescence
  4. T(DR) : V1 Sum / V15 Sum or 4649/4591
    • Mostly unbiased (slightly low-T)
    • d R / d T < 0
    • R increases with fluorescence
    • => T decreases with fluorescence (?)
      • That is, assuming that V15 is not fluoresced

Expected T ordering from t^2 fluctuations

  • T(3d-4f) < T(DR) ~= T(ORL-CEL) < T(CEL)
  • Example: NGC 7009
    • T(3d-4f) = 1000 K
    • T(DR) = 3000 K
    • T(ORL-CEL) = ?
    • T(CEL) = 10,000 K

Expected T ordering from fluorescence

  • T(DR) < T(ORL-CEL) < T(CEL) < T(3d-4f)
    • Example: Orion (Eduardo nebula)
      • T(DR) = 4500 K
      • T(ORL-CEL) = 8000 K
      • T(CEL) = 8500 K
      • T(3d-4f) = 10,000 K

Eduardo O II strengths

4590.974595.9646494649/45914275.554649/42764189.794649/41904276/45914089.294649/4089
Cut 1 shock34.234.20 / 034.20 / 034.20 / 00/034.20 / 0
Cut 2 shock4.22.025.86.142.89.214.75.490.6725.80 / 0
Cut 3 shock5.426.54.9126.50 / 07.53.530.0026.50 / 0
Cut 1 neb2.72.211.24.151.48.002.34.870.522.54.48
Cut 2 neb2.42.012.25.081.77.182.06.100.713.13.94
Cut 3 neb2.41.512.95.381.68.062.16.140.672.64.96
Cut 42.52.012.65.041.96.632.35.480.762.55.04

Te, ne diagnostics from O II

  • Eduardo uses components of V1 as density indicator
    • This is fine and is what everyone does
  • Then they use 3d-4f lines 4089.29, 4275.55 as Te indicators
    • But 4089.29 is disfavored because it is affected by a ghost
    • Why these? The T sensitivity is not very high
    • Variation in ratio between 3000 → 10000 K (Case B @ 1e4 pcc)
      1. 4649/4276: 5.58 → 7.52 - factor of 1.35 increasing with T
        • 3s-3p / 3d-4f
      2. 4649/4089: 2.99 → 3.98 - factor of 1.33 increasing with T
        • 3s-3p / 3d-4f
      3. 4649/4190: 5.59 → 3.43 - factor of 1.63 decreasing with T
        • 3s-3p / DR
      4. 4649/4591: 6.00 → 3.70 - factor of 1.62 decreasing with T
        • 3s-3p / DR
      5. 4276/4591: 1.08 → 0.49 - factor of 2.20 decreasing with T
        • 3d-4f / DR
    • So, T-diagnostics 1 and 2 are what Eduardo uses
      • He gets values of 6.6 to 9.2 for 4649/4276, which would actually suggest T > 16,000 K for HH 529-II shock
      • Average nebula is 7.47 +/- 0.34, which gives 9800 +/- 1500 K, which is a bit high
      • Uncertainties are quite high however, so this is probably consistent with what is shown in Fig 8 of HH 529 paper
      • If there were a 20% fluorescence contribution to V1 as suggested by MUSE analysis, then this would bring the nebula ratio down to 6.23 +/- 0.28, which implies T = 5300 +/- 600 K, which is now a bit on the low side
      • For 4649/4089, average nebula is 4.60 +/- 0.25, which implies T = 15,200 +/- 2000 K
      • Again, with a 20% fluorescence contribution to 4649, this is reduced to 3.83 +/- 0.21 = T = 8900 +/- 1700 K
      • So averaging the 4649/4276 and 4649/4089 gives 12,500 +/- 2700 K, or 7100 +/- 2000 K after correcting for 20% fluorescence
    • T-diagnostics 3 and 4 are what Fang:2013a use for NGC 7009
      • Nebula has 4649/4591 = 4.15 → 5.38 = 4.9 +/- 0.3 => T = 4500 +/- 500 K
      • Nebula has 4649/4190 = 4.87 → 6.14 = 5.65 +/- 0.30 => T = 3100 +/- 200 K
      • With the 20% fluorescence correction, these become:
        • 4649/4591 = 4.1 +/- 0.2 => T = 7000 +/- 1000 K
        • 4649/4190 = 4.71 +/- 0.25 => T = 3900 +/- 500 K
      • This is better, but still too low, so maybe the fluorescence correction should be higher
    • Finally, T-diagnostic 5 should eliminate dependence on fluorescence (unless the DR lines are fluoresced)
      • Nebula 4276/4591 = 0.67 +/- 0.05 => T = 6000 +/- 700 K
      • So this is still a bit on the low side, especially since it is a lower limit if there is fluorescent contribution to V15 4591
  • Manu results
    • 4649/4591 is noisy but varies from 9.0 +/- 2.0 in inner nebula to 6.0 +/- 3.0 in outer nebula
      • V1-sum fractional excess is about 1.0 close to Trapezium and is about 0.5 in Big Arc
      • So this could mean that corrected 4649/4591 = 4.0 in both cases => T = 7500 +/- 4000 K
      • Yes, that makes sense
  • Adal results

Theoretical recombination line ratios from Storey for Case B @ 1e4 pcc

  • The 3d-4f lines have a steeper fall of emissivity with T than the V1 lines
    • This gives one type of T diagnostic, such as 4649/4089 (V1/V48a) or 4649/4276 (V1/V67)
    • E.g., Fig 17 of Fang:2013a, where the theoretical curve agrees reasonably well with what I have calculated from Storey (presumably because they use the same source)
      • Note that they measure 4649/4089 = 2.5 for Saturn Nebula, which is much lower than in Orion, and which implies a low T ≈ 1000 - 1500 K
  • The ^1D parentage lines (core-excited) have an emissivity that rises with T (dielectronic recombination)
    • This gives the second type of T diagnostic, such as 4649/4591 (V1/V15) or 4649/4190 (V1/V36)
    • There are also M101 and M105 lines, but these are either weak or masked by other lines in Manu spectra
    • Also 4347 line (V16), but it is stuck among stronger lines of V2 (3s-3p ^4P) at 4345 and 4349
log10(T)4089.294275.554649.134649/42764649/40894189.794189.584649/41904590.974649/45914276/4591
2.0001.229E-237.288E-242.827E-233.882.301.680E-266.926E-281616.117.061E-26400.37103.21
2.1009.925E-245.993E-242.270E-233.792.291.362E-265.075E-281606.805.696E-26398.53105.21
2.2008.023E-244.872E-241.824E-233.742.271.105E-263.777E-281596.124.627E-26394.21105.30
2.3006.351E-243.870E-241.443E-233.732.278.854E-272.810E-281579.643.731E-26386.76103.73
2.4005.110E-243.080E-241.160E-233.772.277.259E-272.183E-281551.363.091E-26375.2899.64
2.5004.097E-242.435E-249.339E-243.842.286.212E-271.909E-281458.562.626E-26355.6492.73
2.6003.286E-241.923E-247.555E-243.932.306.740E-272.900E-281074.682.444E-26309.1278.68
2.7002.639E-241.521E-246.150E-244.042.331.204E-268.153E-28478.402.859E-26215.1153.20
2.8002.120E-241.205E-245.031E-244.182.372.754E-262.295E-27168.634.359E-26115.4227.64
2.9001.701E-249.577E-254.130E-244.312.435.714E-265.130E-2766.327.246E-2657.0013.22
3.0001.368E-247.610E-253.406E-244.482.499.909E-269.173E-2731.461.129E-2530.176.74
3.1001.098E-246.051E-252.817E-244.662.571.446E-251.357E-2617.811.562E-2518.033.87
3.2008.801E-254.809E-252.334E-244.852.651.834E-251.727E-2611.631.926E-2512.122.50
3.3007.032E-253.816E-251.934E-245.072.752.087E-251.952E-268.472.157E-258.971.77
3.4005.595E-253.019E-251.603E-245.312.872.193E-252.012E-266.702.244E-257.141.35
3.5004.435E-252.381E-251.328E-245.582.992.182E-251.934E-265.592.214E-256.001.08
3.6003.495E-251.871E-251.099E-245.873.142.092E-251.764E-264.842.107E-255.220.89
3.7002.743E-251.463E-259.083E-256.213.311.953E-251.547E-264.311.954E-254.650.75
3.8002.142E-251.139E-257.502E-256.593.501.786E-251.318E-263.911.776E-254.220.64
3.9001.665E-258.827E-266.197E-257.023.721.600E-251.098E-263.621.584E-253.910.56
4.0001.289E-256.812E-265.124E-257.523.981.402E-258.974E-273.431.385E-253.700.49
4.1009.936E-265.236E-264.255E-258.134.281.201E-257.217E-273.341.184E-253.590.44
4.2007.644E-264.015E-263.568E-258.894.671.004E-255.714E-273.369.901E-263.600.41
4.3005.915E-263.094E-263.059E-259.895.178.202E-264.456E-273.548.115E-263.770.38
4.4004.707E-262.448E-262.740E-2511.195.826.552E-263.424E-273.976.575E-264.170.37

Potential diagnostics of fluorescence

Other 3d-4f lines that Eduardo uses in his Table 13

  • Values given as (Storey XXX) are effective recomb rates for Case B at 1e4 K and 1e4 pcc
  • 4087.15
    • Manu sees blend at 4085
      • 4085.11 3p ^4D - 3d ^4F (feeds into V1) (Storey 6.2e-26)
      • 4086.59 3d ^4F - 4f D 2[2] (Storey 8.5e-28)
      • 4086.71 3d ^4F - 4f D 2[2] (Storey 3.6e-29)
      • 4087.15 3d ^4F - 4f G 2[3] (Storey 4.4e-26)
      • 4087.56 3p ^2P - 4s ^4P (Storey 1.4e-31) intercombination
    • Eduardo sees 4085.11 and 4087.15 with same strength in nebula: 1.8e-4 Hb
  • 4089.29
    • Manu sees blend
      • 4088.27 3d ^4F - 4f G 2[5] (Storey 2.4e-27)
      • 4089.29 3d ^4F - 4f G 2[5] (Storey 1.29e-25)
      • 4090.27 3p ^2D - 4d ^4F (Storey 2.5e-30)
      • 4092.93 3p ^4D - 3d ^4F (Storey 4.2e-26)
  • 4095.64
  • 4097.26
  • 4275.55

Diagnostics from Bastin thesis

  • These have overlap with other lines, but he has particular combinations, which he chooses because:
    1. Limited case sensitivity - I need to check up on this for other ratios
    2. Unaffected by blending
    3. Stronger lines
  • Ones he chooses are:
  • 4661/4089
    • This is V1/3d-4f, so should be diagnostic of T and fluorescence, but also weakly of density
  • 4414/4089
    • 4414.9 is a doublet line in 3s-3p, so will be rad recomb plus maybe fluorescence
    • In Orion it is in blend with [Fe II] 4413.78, which is slightly brighter

O II V1 / 4610

  • This can be measured in Adal slits easily
  • Trickier in Manu because of blend with [Fe III] 4607
  • Take 4649 / 4609 to be definite
  • 4610 is a blend:
    • 4609.44 3d.2D_e - 4f F 2[4]
    • 4610.20 3d.2D_e - 4f F 2[2]
  • 4649 is
    • 4649.13 V1 3s.4P - 3p.4D_o
  • Adal measurements - units of 1e-4 I(4959)
    Zone464946104649/4610
    A11.41.29.50
    B12.81.012.80
    C12.81.012.80
    D10.61.010.60
    E10.71.19.73
    F10.41.28.67
  • UVES observations (Adal HH202 and Eduardo HH529 are missing the 4610 lines)
  • Storey recomb ratios
    • Case B, 3000-1e4 K, 1e4 pcc:
      T4649.134609.444610.204649/4610
      3.51.328E-241.989E-255.794E-265.17
      3.61.099E-241.555E-254.562E-265.46
      3.79.083E-251.210E-253.578E-265.79
      3.87.502E-259.373E-262.793E-266.17
      3.96.197E-257.231E-262.170E-266.59
      4.05.124E-255.553E-261.678E-267.09
    • Case B, 3000-1e4 K, 1e3 pcc:
      T4649.134609.444610.204649/4610
      3.59.742E-251.844E-255.151E-264.13
      3.67.725E-251.396E-253.960E-264.31
      3.76.114E-251.053E-253.030E-264.51
      3.84.832E-257.947E-262.303E-264.71
      3.93.823E-255.946E-261.746E-264.97
      4.03.031E-254.432E-261.318E-265.27
    • Case B, 3000-1e4 K, 1e5 pcc:
      T4649.134609.444610.204649/4610
      3.51.407E-242.046E-255.929E-265.33
      3.61.172E-241.610E-254.683E-265.64
      3.79.757E-251.262E-253.684E-265.98
      3.88.122E-259.859E-262.885E-266.37
      3.96.758E-257.661E-262.248E-266.82
      4.05.627E-255.922E-261.743E-267.34

O II 4317 / 4304

  • Ratio
    • 4317.0: 3s.4P1/2 - 3p.4P3/2^o
      • Minor contribution from 4317.7 3d-4f
      • Also 4319.6 of same multiplet
    • 4303.8: 3d.4P5/2 - 4f.D[3]^o5/2
  • Ratio from Escalante:2013a
    • With fluorescence: 1.58/0.63 = 2.51
    • Just recombination: 0.605 1.58/0.63 = 1.52
  • [X] Should check theoretical ratio from Storey
    • Full range is 0.56 to 1.2
    • Case B, 3000-1e4 K, 1e4 pcc:
      T4303.824317.144317/4303
      3.52.236E-251.864E-250.83
      3.61.768E-251.534E-250.87
      3.71.397E-251.264E-250.90
      3.81.100E-251.042E-250.95
      3.98.619E-268.586E-261.00
      4.06.700E-267.073E-261.06
    • Case B, 3000-1e4 K, 1e3 pcc:
      T4303.824317.144317/4303
      3.54.019E-252.261E-250.56
      3.63.309E-251.876E-250.57
      3.72.718E-251.557E-250.57
      3.82.222E-251.292E-250.58
      3.91.804E-251.071E-250.59
      4.01.453E-258.883E-260.61
    • Case B, 3000-1e4 K, 1e5 pcc:
      T4303.824317.144317/4303
      3.52.051E-251.827E-250.89
      3.61.603E-251.501E-250.94
      3.71.251E-251.234E-250.99
      3.89.731E-261.013E-251.04
      3.97.529E-268.326E-261.11
      4.05.779E-266.836E-261.18
  • Ratio from Manu
    • As high as 3
    • As low as 1
  • Ratio from Eduardo
    • cut 2 nebula: 0.028/0.021 = 1.33
    • cut 2 shock: 0.071/0.046 = 1.54
    • cut 3 nebula: 0.026/0.020 = 1.30
    • cut 1 nebula: 0.019/0.018 = 1.06
    • cut 4 nebula: 0.027/0.026 = 1.04
  • Ratio from Adal HH202
    • Nebula: 0.021/0.027 = 0.78 +/- 0.3
    • Shocks: 0.045/0.016 = 2.8 +/- 1
  • So in summary, the ratios are generally higher than the recombination predictions

Analyze the pumping line

Revisiting the Adal and Manu analysis

  • The Adal spectra are plotted for 6 different sections of Slit 6
    x range
    0:40Red bay
    40:50
    50:62
    67:80
    80:95
    95:154
    • Numbers x correspond to pixels of length 1.2 arcsec along slit
    • Note that 62:67 is omitted - corresponds to 159-350
      • x=65 → 78 arcsec from left edge
    • Total length = 154 1.2 = 185 arcsec

Adal’s V1 line strengths

  • In units of 1e-4 I(4959) ≈ 1e-4 I(Hb) in the bright zones
  • 4649: 10 → 12
  • 4642: 7 → 8
  • These are about 50% higher than predictions of Escalante:2012a for IC 418
  • More details are given down here in Ratios within the V1 multiplet
    • Sum V1 = 32 → 36 in these units
    • If interpreted in terms of recombination, this implies T = 7500 → 7750 K

Extract maps from MUSE cubes

  • This is copied from Raman project
    • Remove continuum from cube
  • But we change the wavelengths because we are working with wavsec0
    • Total range is 4595 → 5191 Å
import sys
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
from numpy.polynomial import Chebyshev as T
import itertools

try:
    DATADIR = sys.argv[1]
    SUFFIX = sys.argv[2]
    OUTDIR = sys.argv[3]
except IndexError:
    sys.exit(f"Usage: {sys.argv[0]} DATADIR SUFFIX OUTDIR")

infile = f"muse-hr-data-wavsec0{SUFFIX}.fits"
hdu = fits.open(f"{DATADIR}/{infile}")["DATA"]
w = WCS(hdu)
nwav, ny, nx = hdu.data.shape
wavpix = np.arange(nwav)

# Two pairs of adjacent sections for the true continuum

# Wavelength sections of clean continuum (lots of small sections)
clean_sections = [
    [4610.0, 4616.0], [4624.0, 4627.0], # between C II, N II, O II
    [4690.0, 4697.0], [4720.0, 4730.0], # between He I and Ar IV
    [4746.0, 4750.0], [4760.0, 4765.0], # between Fe III lines
    [4782.0, 4786.0], [4820.0, 4830.0], # next to Hb
    [4910.0, 4916.0], [5060.0, 5080.0], # to the red
    [5090.0, 5100.0], [5170.0, 5185.0], # to the red
]

cont_slices = []
for wavs in clean_sections:
    wavs = 1e-10*np.array(wavs)
    _, _, wpix = w.world_to_pixel_values([0, 0], [0, 0], wavs)
    cont_slices.append(slice(*wpix.astype(int)))


# Use median over each section to avoid weak lines
cont_maps = np.array([np.median(hdu.data[_, :, :], axis=0) for _ in cont_slices])
cont_wavpix = np.array([np.median(wavpix[_], axis=0) for _ in cont_slices])
# Inefficient but simple algorithm - loop over spaxels
bgdata = np.empty_like(hdu.data)
for j, i in itertools.product(range(ny), range(nx)):
    # Fit polynomial to BG
    try:
        p = T.fit(cont_wavpix, cont_maps[:, j, i], deg=2)
        # and fill in the BG spectrum of this spaxel
        bgdata[:, j, i] = p(wavpix)
    except:
        bgdata[:, j, i] = np.nan



for suffix, cube in [
        ["cont", bgdata],
        ["cont-sub", hdu.data - bgdata],
        # ["cont-div", hdu.data/bgdata],
]:
    outfile = infile.replace(".fits", f"-{suffix}.fits")
    fits.PrimaryHDU(header=hdu.header, data=cube).writeto(
        f"{OUTDIR}/{outfile}", overwrite=True)
    print(f"Written {outfile}")
python muse/subtract-continuum-wavsec0.py $DATADIR $SUFFIX $OUTDIR

Now we do a simple extraction of the whole V1 multiplet

import sys
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS

try:
    DATADIR = sys.argv[1]
    SUFFIX = sys.argv[2]
    OUTDIR = sys.argv[3]
except IndexError:
    sys.exit(f"Usage: {sys.argv[0]} DATADIR SUFFIX OUTDIR")

infile = f"muse-hr-data-wavsec0{SUFFIX}-cont-sub.fits"
outfile = f"o_ii-v1-sum{SUFFIX}.fits"
hdu = fits.open(f"{DATADIR}/{infile}")["DATA"]
w = WCS(hdu)
nwav, ny, nx = hdu.data.shape


# Wavelength sections of O II V1 multiplet
v1_sections = [
    [49, 71], [79, 83], [90, 102]
]

im = np.zeros((ny, nx))
for i1, i2 in v1_sections:
    im += np.sum(hdu.data[i1:i2, :, :], axis=0)

fits.PrimaryHDU(header=w.celestial.to_header(), data=im).writeto(
        f"{OUTDIR}/{outfile}", overwrite=True)
print(f"Written {outfile}")
python muse/extract-o_ii-v1-sum.py $DATADIR $SUFFIX $OUTDIR

Extraction of multiplet in 4 sections

pix1pix2wav1wav2O II V1 linesOthersLabel
38444627.34632.4N II 4631, [Ni II] 4628N_II-4631
44494632.44636.65N III 4634N_III-4634
49624636.654646.04639, 4642N III 4641, N II 4643O_II-V1-4639-42
62714646.04654.54649, 4651O_II-V1-4649-51
79834662.154664.74662(Red wing of 4658)O_II-V1-4662
901024671.54680.854674, 4676O_II-V1-4674-76
1011194679.154694.45He II 4686 absHe_II-4686
import sys
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS

try:
    DATADIR = sys.argv[1]
    SUFFIX = sys.argv[2]
    OUTDIR = sys.argv[3]
except IndexError:
    sys.exit(f"Usage: {sys.argv[0]} DATADIR SUFFIX OUTDIR")

infile = f"muse-hr-data-wavsec0{SUFFIX}-cont-sub.fits"
infile_bg = f"muse-hr-data-wavsec0{SUFFIX}-cont.fits"
hdu = fits.open(f"{DATADIR}/{infile}")["DATA"]
hdubg = fits.open(f"{DATADIR}/{infile_bg}")["DATA"]
w = WCS(hdu)
nwav, ny, nx = hdu.data.shape
wavpix = np.arange(nwav)
_, _, wavs = w.pixel_to_world_values([0]*nwav, [0]*nwav, wavpix)
wavs *= 1.e10
for i1, i2, _, _, _, _, label in TAB:
    outfile = f"{label}-sum{SUFFIX}.fits"
    imsum = np.sum(hdu.data[i1:i2, :, :], axis=0)
    fits.PrimaryHDU(
        header=w.celestial.to_header(),
        data=imsum
    ).writeto(f"{OUTDIR}/{outfile}", overwrite=True)
    print(f"Written {outfile}")

    outfile = f"{label}-wav{SUFFIX}.fits"
    imwav = np.sum(hdu.data[i1:i2, :, :]*wavs[i1:i2, None, None], axis=0)/imsum
    fits.PrimaryHDU(
        header=w.celestial.to_header(),
        data=imwav
    ).writeto(f"{OUTDIR}/{outfile}", overwrite=True)
    print(f"Written {outfile}")

    outfile = f"{label}-bg{SUFFIX}.fits"
    imsum = np.sum(hdubg.data[i1:i2, :, :], axis=0)
    fits.PrimaryHDU(
        header=w.celestial.to_header(),
        data=imsum
    ).writeto(f"{OUTDIR}/{outfile}", overwrite=True)
    print(f"Written {outfile}")
python muse/extract-o_ii-v1-sections.py $DATADIR $SUFFIX $OUTDIR

Do multibinning of V1 images

import sys
from pathlib import Path
from distutils.dep_util import newer, newer_group
import numpy as np
sys.path.append("/Users/will/Dropbox/multibin-maps")
from rebin_utils import downsample, oversample, pad_array
from astropy.io import fits

nlist = [1, 2, 4, 8, 16, 32, 64, 128, 256]
mingoods = [2, 2, 2, 2, 2, 2, 2, 2, 2]


try:
    datadir = Path(sys.argv[1])
    infile = sys.argv[2]
    contfile = sys.argv[3]
    cont_threshold = float(sys.argv[4])
except:
    sys.exit('Usage: {} DATADIR INFILE CONTFILE CONT_THRESHOLD'.format(sys.argv[0]))


hdu = fits.open(datadir / infile)[0]
if hdu.data is None:
    hdu = fits.open(datadir / infile)[1]
hdr = hdu.header
# Maximum binning
nmax = nlist[-1]

# continuum image
chdu = fits.open(datadir / contfile)[0]
if chdu.data is None:
    chdu = fits.open(datadir / contfile)[1]

# Pad arrays to nearest multiple of nmax
im = pad_array(hdu.data, nmax)
cim = pad_array(chdu.data, nmax)

w = np.ones_like(im)
starmask = cim > cont_threshold

# If we pad the starmask and combine it with the padded image, then we
# automatically deal with the case where the input files have already
# been padded
m =  np.isfinite(im) & (~pad_array(starmask, nmax))

for n, mingood in zip(nlist, mingoods):
    im[~m] = 0.0
    outfile = infile.replace('.fits', '-bin{:03d}.fits'.format(n))
    print('Saving', outfile)
    # Save both the scaled image and the weights, but at the full resolution
    fits.HDUList([
        fits.PrimaryHDU(),
        fits.ImageHDU(data=oversample(im, n), header=hdr, name='scaled'),
        fits.ImageHDU(data=oversample(w, n), header=hdr, name='weight'),
    ]).writeto(datadir / outfile, clobber=True)
    # Now do the rebinning by a factor of two
    [im,], m, w = downsample([im,], m, weights=w, mingood=mingood)
python muse/multibin-map-orl.py ../Orion-HH-data/MUSE O_II-V1-4649-51-sum.fits O_II-V1-4649-51-bg.fits 1.0e7
python muse/multibin-map-orl.py ../Orion-HH-data/MUSE O_II-V1-4639-42-sum.fits O_II-V1-4649-51-bg.fits 1.0e7
python muse/multibin-map-orl.py ../Orion-HH-data/MUSE N_III-4634-sum.fits O_II-V1-4649-51-bg.fits 1.0e7
python muse/multibin-map-orl.py ../Orion-HH-data/MUSE N_II-4631-sum.fits O_II-V1-4649-51-bg.fits 1.0e7
python muse/multibin-map-orl.py ../Orion-HH-data/MUSE He_II-4686-sum.fits O_II-V1-4649-51-bg.fits 1.0e7
python muse/multibin-map-orl.py ../Orion-HH-data/MUSE linesum-O_III-5007.fits O_II-V1-4649-51-bg.fits 1.0e7

Redo multibinning for extinction-corrected maps

Have a more generous continuum mask, since otherwise we get bad extinction around th2A

LINES="O_II-V1-4649-51-sum O_II-V1-4639-42-sum N_III-4634-sum N_II-4631-sum He_II-4686-sum linesum-O_III-5007"
for line in $LINES; do
    python muse/multibin-map-orl.py ../Orion-HH-data/MUSE ${line}-excorr.fits O_II-V1-4649-51-bg.fits 2.0e6
done

Combine multibinned images

  • Try a different strategy this time
    • Use a high s/n image, such as O_III-5007, as a template
    • Make a series of masks at different levels on this image
    • Use those to select the multigrid levels to combine
import sys
from pathlib import Path
import numpy as np
from astropy.io import fits

datadir = Path("~/Dropbox/Orion-HH-data/MUSE").expanduser()

try:
    fileroot = sys.argv[1]
    threshold = float(sys.argv[2])
    STEEPNESS = float(sys.argv[3])
    SUFFIX = sys.argv[4]
except IndexError:
    sys.exit(f'Usage: {sys.argv[0]} FILEROOT THRESHOLD STEEPNESS SUFFIX')


refhdu = fits.open(datadir / "linesum-O_III-5007-bin001.fits")["SCALED"]
outim = np.empty_like(refhdu.data)
nlist = [1, 2, 4, 8, 16, 32, 64, 128, 256]
for n in reversed(nlist):
    hdu = fits.open(datadir / f"{fileroot}-bin{n:03d}.fits")["SCALED"]
    mask = refhdu.data >= threshold/n**STEEPNESS
    outim[mask] = hdu.data[mask]

fits.PrimaryHDU(
    header=hdu.header,
    data=outim,
).writeto(
    datadir / f"{fileroot}-multibin{SUFFIX}.fits",
    overwrite=True,
)
LINES="O_II-V1-4649-51-sum O_II-V1-4639-42-sum N_III-4634-sum N_II-4631-sum linesum-O_III-5007"
for line in $LINES; do
    python muse/multibin-combine.py ${line}-excorr 2e9 1.5 -coarse-2e9-1p5
done
LINES="O_II-V1-4649-51-sum O_II-V1-4639-42-sum N_III-4634-sum N_II-4631-sum linesum-O_III-5007"
for line in $LINES; do
    python muse/multibin-combine.py ${line}-excorr 1e9 1.5 -medium-1e9-1p5
done
LINES="O_II-V1-4649-51-sum O_II-V1-4639-42-sum N_III-4634-sum N_II-4631-sum linesum-O_III-5007"
for line in $LINES; do
    python muse/multibin-combine.py ${line}-excorr 3e8 1.5 -fine-3e8-1p5
done
LINES="O_II-V1-4649-51-sum O_II-V1-4639-42-sum N_III-4634-sum N_II-4631-sum linesum-O_III-5007"
for line in $LINES; do
    python muse/multibin-combine.py ${line}-excorr 1e8 1.5 -vfine-1e8-1p5
done

This makes maps of the [S III] temperature on the same grids as used

line=muse-derived-Te-iii
python muse/multibin-combine.py ${line} 2e9 1.5 -coarse-2e9-1p5
python muse/multibin-combine.py ${line} 1e9 1.5 -medium-1e9-1p5
python muse/multibin-combine.py ${line} 3e8 1.5 -fine-3e8-1p5
python muse/multibin-combine.py ${line} 1e8 1.5 -vfine-1e8-1p5

Do extinction correction

  • De-reddening must be done at the highest resolution, so before the multibinning
    • There is very little noise in the Balmer decrement map, so this is OK
  • In the Orion MUSE project I de-reddened [S III] 6313/9069 using Ha to Pa a
  • But then I did another version
    • Do extinction correction for all lines
    • This used the Hb/Ha map and the Blagrave extinction law from pyneb
import sys
from pathlib import Path
import numpy as np
import pyneb
from astropy.io import fits

# Set up Blagrave 2007 extinction law
REDCORR = pyneb.extinction.red_corr.RedCorr(
    law='CCM89 Bal07', R_V=5.5, cHbeta=1.0)

def flambda(wav):
    """Find [(A_lam / A_Hb) - 1] as function of wavelength `wav`

    This is the same as given in Table 2 of Blagrave et al (2007)

    """
    return np.log10(REDCORR.getCorrHb(wav))


def CHb_from_RHbHa(RHbHa, balmer0=2.874):
    """Find base-10 extinction at H beta from balmer decrement `RHbHa`

    Assumes that the intrinsic Balmer decrement is `balmer0`

    """
    return np.log10(balmer0*RHbHa) / flambda(6563)


def CHb_from_R6563_9229(RBaPa, RBaPa0=112.0):
    """Find base-10 extinction at H beta from 6563/9229 decrement `RBaPa`

    Assumes that the intrinsic decrement is `RBaPa0`

    """
    return np.log10(RBaPa/RBaPa0) / (flambda(9229) - flambda(6563))



DATADIR = Path("../Orion-HH-data/MUSE")

if __name__ == '__main__':

    try:
        prefix = sys.argv[1]
        wav = int(sys.argv[2])
    except IndexError:
        print(f'Usage: {sys.argv[0]} LINEID WAV')

    hb_ha = fits.open(DATADIR / 'ratio-4861-6563.fits')[0].data
    chb = CHb_from_RHbHa(hb_ha)
    clam = (1.0 + flambda(wav))*chb
    fn = f"{prefix}.fits"
    hdu = fits.open(DATADIR / fn)[0]
    fn_new = f"{prefix}-excorr.fits"
    fits.PrimaryHDU(
        data=hdu.data*10**clam,
        header=hdu.header
    ).writeto(DATADIR / fn_new, overwrite=True)
    print(fn_new)
python muse/correct-for-extinction.py linesum-O_III-5007 5007
python muse/correct-for-extinction.py O_II-V1-4649-51-sum 4650
python muse/correct-for-extinction.py O_II-V1-4639-42-sum 4640
python muse/correct-for-extinction.py N_II-4631-sum 4631
python muse/correct-for-extinction.py N_III-4634-sum 4634

Subtract the N II and N III contamination from 4639-42 image

  • Find scale factor from Adal spectra
    • N_II-4643 = 0.5 N_II-4631
    • N_III-4641 = 1.5 N_III-4634

Take ratio of V1 to 5007 for the two main sections

import sys
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
from pathlib import Path 

datadir = Path("../Orion-HH-data/MUSE")
hdu5007, = fits.open(datadir /  f"linesum-O_III-5007-{SUFFIX}.fits")
hdu4650, = fits.open(datadir / f"O_II-V1-4649-51-sum-{SUFFIX}.fits")
hdu4640, = fits.open(datadir / f"O_II-V1-4639-42-sum-{SUFFIX}.fits")
hdu4631, = fits.open(datadir / f"N_II-4631-sum-{SUFFIX}.fits")
hdu4634, = fits.open(datadir / f"N_III-4634-sum-{SUFFIX}.fits")

fits.PrimaryHDU(
    header=hdu4650.header,
    data=hdu4650.data/hdu5007.data
).writeto(datadir / f"O_II-V1-4649-51-over-5007-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
    header=hdu4640.header,
    data=hdu4640.data/hdu5007.data
).writeto(datadir / f"O_II-V1-4639-42-over-5007-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
    header=hdu4650.header,
    data=hdu4650.data/hdu4640.data
).writeto(datadir / f"O_II-V1-4649-51-over-4639-42-{SUFFIX}.fits", overwrite=True)

# Correct the 4639-42 for the N_II and N_III
hdu4640.data -= 0.5*hdu4631.data + 1.5*hdu4634.data

fits.PrimaryHDU(
    header=hdu4640.header,
    data=hdu4640.data/hdu5007.data
).writeto(datadir / f"O_II-V1-4639-42-minus-N_II_III-over-5007-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
    header=hdu4650.header,
    data=hdu4650.data/hdu4640.data
).writeto(datadir / f"O_II-V1-4649-51-over-4639-42-minus-N_II_III-{SUFFIX}.fits", overwrite=True)

Ratios within the V1 multiplet

  • In the Manu spectra I calculated various ratios
    • Dominant feature is a radial gradient from inside to outside
    • Ratios are with respect to sum 4639+4649+4651+4662+4676
      • I think 4642 is not included because of contamination
      • And 4676 must include 4674
    • From the table below, the ratio of the blends 4650/4640 is only predicted to vary by 15%
      RatioInnerOuter
      46390.140.17
      46420.380.34
      46490.420.30
      46510.150.18
      46620.150.2
      46760.100.10
      46400.520.51
      46500.570.48
      4650/46401.100.94
    • This is broadly consistent with what we get from MUSE
  • In the Adal spectra we have all the lines and 6 regions
    • Best to have the table transposed
    • Line strengths in units of 0.0001 with respect to 4959
      Zone4639464246494651466246744676Sum40+50/Sum50/4050/500740/5007
      A4.08.311.44.04.90.92.936.40.761.255.34.2
      B4.68.112.84.24.90.92.938.40.771.345.84.4
      C4.58.312.84.55.00.92.838.80.781.355.94.4
      D3.87.210.63.54.00.82.432.30.781.284.83.8
      E3.97.210.73.74.00.72.332.50.781.304.93.8
      F5.08.510.45.15.41.13.338.80.751.155.34.6
    • So the absolute values of 50/40 are a bit larger than Manu’s, but the trend is the same
      • Increases towards center
    • The sum of the 4640 blend and 4650 blend are about 0.77 of the total sum
      • There is a slight dependence on density, but the variation is only 4%

Calculate a T from V1/5007 as in Peimbert-squared

  • Supposedly we have
    Sum_V1/4959 = 6.56e-5*((T/1.e4)**-0.415)*np.exp(29160.0/T)
        
  • Theoretically: 5007/4959 = 2.91817
  • And we can estimate Sum_V1 = (4640 + 4650)/0.77
  • Make a table
    T1e4 Sum_V1/4959
    6000104.6
    650069.6
    700049.0
    725041.8
    750036.1
    775031.4
    800027.6
    850021.7
    900017.5
    1000012.1
    110008.9
    120006.9
  • So the Adal measurements suggest T = 7500 +/- 200 K
    • [S III] measurements give T = 8500 +/- 300 K
    • This is consistent with the factor of 0.9 I found for T(4363/5007) vs T(V1/4959)
  • Convert our measurements into a T map
  • Also calculate difference and ratio with [S III] temperature
  • And finally, calculate “excess” V1 emission
    • That is calculate expected ratio V1/4959 from [S III] temperature
    • Then multiply this by S(4959) and subtract from S(V1)
import sys
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
from pathlib import Path 

datadir = Path("../Orion-HH-data/MUSE")
hdu4650, = fits.open(datadir / f"O_II-V1-4649-51-over-5007-excorr-{SUFFIX}.fits")
hdu4640, = fits.open(datadir / f"O_II-V1-4639-42-minus-N_II_III-over-5007-excorr-{SUFFIX}.fits")
hduTiii, = fits.open(datadir / f"muse-derived-Te-iii-{SUFFIX}.fits")
hdu5007, = fits.open(datadir / f"linesum-O_III-5007-excorr-{SUFFIX}.fits")

def func_ratio_v1_4959(T):
    return 6.56e-5*((T/1.e4)**-0.415)*np.exp(29160.0/T)

# Grid of 10 K increments
Tgrid = np.linspace(5000.0, 15000.0, 1001)
Rgrid = func_ratio_v1_4959(Tgrid)
# Reverse arrays since we need ratio in ascending order for np.interp
Rgrid = Rgrid[::-1]
Tgrid = Tgrid[::-1]

RATIO_4640_50_OVER_SUM = 0.77
RATIO_5007_4959 = 2.91817
ratio_v1_4959 = RATIO_5007_4959*(hdu4640.data + hdu4650.data)/RATIO_4640_50_OVER_SUM

T = np.interp(ratio_v1_4959, Rgrid, Tgrid)
T[hdu4650.data < 0.0] = np.nan
T[T == Tgrid.max()] = np.nan
T[T == Tgrid.min()] = np.nan

fits.PrimaryHDU(
    header=hdu4650.header,
    data=ratio_v1_4959
).writeto(datadir / f"O_II-V1-sum-over-4959-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
    header=hdu4650.header,
    data=T,
).writeto(datadir / f"T_Op2_ORL_CEL-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
    header=hdu4650.header,
    data=hduTiii.data - T,
).writeto(datadir / f"Delta_T-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
    header=hdu4650.header,
    data=T/hduTiii.data,
).writeto(datadir / f"T_ratio-{SUFFIX}.fits", overwrite=True)

ratio_from_T_SIII = func_ratio_v1_4959(hduTiii.data)
V1_from_T_S_III = ratio_from_T_SIII*hdu5007.data/RATIO_5007_4959
V1_total = (hdu4640.data + hdu4650.data)*hdu5007.data/RATIO_4640_50_OVER_SUM
V1_excess = V1_total - V1_from_T_S_III
fits.PrimaryHDU(
    header=hdu4650.header,
    data=V1_excess,
).writeto(datadir / f"O_II-V1-sum-excess-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
    header=hdu4650.header,
    data=V1_excess/V1_from_T_S_III,
).writeto(datadir / f"O_II-V1-sum-frac-excess-{SUFFIX}.fits", overwrite=True)

Relation between Δ T and t^2

  • This is for T([O III]) instead of T([S III]) but we will assume that is close enough
  • Peimbert & Peimbert (2013) equations 10, 11
    • give T(4363/4959) and T(V1/4959)
    • in terms of T_0(O++) and t^2(O++)
  • For convenience, put t0 = T_0/1e4 Koii
  • Then we have
    • T(4363/4959) / T_0 = 1 + 0.5 (9.13/t0 - 2.68) t^2 = 1 + a t^2
    • T(V1/4959) / T_0 = 1 + 0.5 (2.916/t0 - 3.095 + 0.415/(2.916/t0 + 0.415)) t^2 = 1 + b t^2
    • Δ T / T_0 = (a - b) t^2
  • Variation of the t^2 coefficients with t0
    t0aba - b
    0.75.180.584.6
    0.754.750.444.31
    0.84.370.334.04
    0.854.030.223.81
    0.93.730.133.6
    0.953.470.053.42
    1.003.23-0.033.26
  • So both T are positively biased wrt mean T_0, especially T(4363/4959)
  • We expect T_0 to be similar to, but slightly lower than T(V1/4959)
    • Taking T_0 = 7500 +/- 200 K gives (a - b) = 4.31 +/- 0.12
    • This implies Δ T = 7500 (4.31 +/- 0.12) t^2 = (32325 +/- 900) t^2
    • Or t^2 = (0.031 +/- 0.001) (Δ T / 1000 K)

Plane-of sky t^2

  • This can be crudely estimated from the standard deviation of T([S III])
  • Measured in a few representative boxes
    T meanstddevt^2
    8284228.6620.0008
    8222.34267.1870.0011
    8262.28148.6770.0003
    8165.87314.530.0015
    7756.21347.0890.0020
    7690.31183.440.0006
    7665.54202.1990.0007
    7658.65218.9460.0008
  • Below the line are from T(V1/4959), although only for medium and coarse gridding since otherwise noise dominates
  • Anyway, it looks like plane-of-sky t^2 is about 0.001 for either diagnostic

Combine the excess maps

  • Only allow positive values
import sys
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
from pathlib import Path 


datadir = Path("../Orion-HH-data/MUSE")

im = None
for suffix in [
        "coarse-2e9-1p5",
        "medium-1e9-1p5",
        "fine-3e8-1p5",
#        "vfine-1e8-1p5",
]:
    hdu, = fits.open(datadir / f"O_II-V1-sum-excess-multibin-{suffix}.fits")
    if im is None:
        im = np.empty_like(hdu.data)
    m = hdu.data > 0.0
    im[m] = hdu.data[m]

fits.PrimaryHDU(
    header=hdu.header,
    data=im,
).writeto(datadir / f"O_II-V1-sum-excess-combo.fits", overwrite=True)
 

Compare with C II fluorescent

  • Use the 6463 line to remove the recombination contribution from 7231
  • With O II, try to subtract a fraction of [O III] 5007 from 4651, assuming a T
  • The excess O II certainly looks very much like fluorescence
    • Many of the detailed morphologies are the same between O II and C II
  • The fractional excess is about 0.8 times the T(S_III) prediction in the Big Arc
    • But much higher around Trapezium
  • A more realistic approach would be to combine T(S_III) with a t^2 value derived from plane-of-sky variations
    • This might give a slightly larger predicted S(V1), so slightly less excess

Look at the O I and [O II] lines

  • This gives another T estimate for the singly-ionized metals zone

Fit Gaussians to O II multiple

  • 4649, 4651 are blended
  • 4642, 4639 are blended with N II and N III too
  • 4674 and 4676 are blended
  • 4631 is pure N II
  • 4607 is pure N II

Make a template for the O II V1 multiplet