- Extract O II and C II lines from MUSE
- For the O II lines, we need to isolate the 4649 blend
- For C II pure recomb lines
- We have 4620 supposedly ?!
- Very weak and there may be another line at 4621
- Also 4803 but blended with N II and [Co II]
- 5342.40 - very weak
- 6151.43 - might be good
- 6461.96 - weak but should be clear
- This is definitely the best bet for C II lines
- Escalante:2012a have it being all recombination
- Whereas 7231 and 7236 are 20 to 40% fluorescent in IC 418
- We have 4620 supposedly ?!
- N II lines
- These are generally weak and must be a mixture of recombination and fluorescence
- Si II lines
- These are much stronger, also mixture
- More O II lines from Manu/Adal
- 4609, 4610 - Escalante:2012a says is 100% recombination
- Terms are in LK coupling scheme
- 3d 2D5/2–4f F[4]o7/2
- 3d 2D3/2–4f F[2]o5/2
- Unfortunately, there is an [Fe III] line at 4607
- Also N II 4607 but that is weaker
- 4607 to 4610 are blended in Manu and MUSE
- The O II lines are well separated from [Fe III] in Adal
- Discussed further below
- Terms are in LK coupling scheme
- 4596
- 4609, 4610 - Escalante:2012a says is 100% recombination
- [ ] Excitation of O II V1
- Multiplet (quartet) is 3s ^4P → 3p ^4D
- Storey:2017a has more rigorous terminology
- But backwards: UPPER → LOWER
- 2s2 2p2(.3P) 3p .4Do → 2s2 2p2(.3P) 3s .4Pe
2s22p2(3P)3p 4Do - 2s22p2(3P)3s 4Pe
- E.g., 4649.13 is index 8790
- Ground state is 2p3 ^4S
- Resonant absorption 2p3 ^4S → 3d ^4P (429.650 → 429.716 Å)
- so that is 2.12 Rydbergs
- Followed by decay to 3p terms
- Need to make a diagram and work out if it is feasible
- Resonant absorption 2p3 ^4S → 3d ^4P (429.650 → 429.716 Å)
- Velocity gradients in Big Arc will tend to make fluorescence more efficient
- Interestingly, the analogous N I multiplet is at 8680-8719
- N I and O II are identical in electron configuration
- We see all these lines nicely in the MUSE data
- They are all at least 95% fluoresced
- [ ] We could look at the equivalent of the 3d-4f lines in N I
- Multiplet (quartet) is 3s ^4P → 3p ^4D
- Case of the 3d-4f lines
- These should not have a fluorescent component
- except that maybe they might if intercombination lines are important
- But they give the same abundances as the other lines (in Eduardo HH 529 data)
- Strongest lines:
- 4303.8: I ≈ 0.63e-4 Hb (Escalante:2013a)
- Compare with 4649 ≈ 6.7e-4 Hb
- ODell:2010a have 4959/Hb = 0.7 to 1.0 in slits 10 and 11, which cover area of Adal’s slit 6
- Adal has 4649/4959 = 10 → 12 times 1e-4
- Eduardo (cut 2) has I(4649.13) = 11.4 in nebula and 24 in shock !!
- Eduardo 4959/Hb in cut 2
- 1.15 in nebula
- 1.67 in shock
- Seen in Manu data - about 5 times weaker than 4317 and 4320 (3s ^4P - 3p ^4P)
- Which are themselves about 4 times weaker than V1
- E.g., Manu has 4649 = 1.13 x cont
- I(4304) = 0.01 x cont, so 13 x weaker than 4649 => I(4304) = 0.77 1e-4 I(Hb)
- Within the errors, this is consistent with Escalante predicted, especially if we add in the 4303.5 contribution: 0.09 + 0.63 = 0.72
- Observed in Eduardo: I = 2.0 (cut 3) and 2.1 (cut 2 neb), and 4.6 (cut 2 shock) !!!
- Compare with 4649 ≈ 6.7e-4 Hb
- 4277 complex
- Strongest component: 4275.5 with predicted I = 0.84
- Blended with [Fe II] 4276.84 in Manu
- Observed in Eduardo with observed I = 1.6
- Strongest component: 4275.5 with predicted I = 0.84
- 4609.3: predicted I ≈ 0.66e-4 Hb (Escalante:2013a)
- Also, weaker component at 4610.2
- Seen in Manu, but blend with [Fe III] 4607
- Very well isolated in Adal: I(4609) = 1e-4 I(4959)
- So this has observed intensity that maybe is slightly higher than predicted (by about 30%)
- 4303.8: I ≈ 0.63e-4 Hb (Escalante:2013a)
- These should not have a fluorescent component
- What states can we have
- 3 outer electrons
- Ground state is 2p^3 ^4S
- 2S+1 = 4 => S = 3/2 so all 3 spins are aligned
- L=0 so J = 3/2
- Pumped state: one electron goes from 2p → 3d
- L = 0 → 1 for E1 transition so must be a ^4P state
- In fact only ^4P levels can be directly pumped from ground
- At least I would have thought, although Escalante also mention ^4S → ^4D transition, which has Δ L = 2, so must be quadrupole
- So 2p^2 3d ^4P has L=1, S=3/2, J= 5/2, 3/2, 1/2
- If we pump the 3d .4P level then we need the transition
- 3d .4Pe → 3p .4Do in order to populate the upper level of V1
- Storey has the following components:
IND wav 2JI 2JF Other Manu 8494 3864.13 1 1 Si II 3863 Blend 8493 3872.44 1 3 [Ne III] 3869 8515 3874.09 3 1 He I 3878 8514 3882.45 3 3 H I 3889 ? 8566 3893.52 5 3 H I 3889 8513 3896.30 3 5 faint 8565 3907.45 5 5 yes 8564 3926.58 5 7 He I 3927 - Unfortunately, most will be blended with other lines
- We should also get another route down via 3p .4S:
- 3d .4Pe → 3p .4So followed by 3p .4So → 3s .4Pe
- which ends at same lower level as V1
- 3d .4Pe → 3p .4So or
2s22p2(3P)3d 4Pe - 2s22p2(3P)3p 4So
IND wav 2JI 2JF Other Manu MUSE Adal 8489 4890.86 1 3 [Fe II] 4890 Blend? Blend? weak but resolved 8507 4906.83 3 3 [Fe II] 4905 Blend? Blend Weak 8559 4924.53 5 3 He I 4922, [Fe III] 4925 Blend? No Possibly - 3p .4So → 3s .4Pe or
2s22p2(3P)3p 4So - 2s22p2(3P)3s 4Pe
IND wav 2JI 2JF Other Manu 8730 3712.74 3 1 H I 3712 No 8729 3727.32 3 3 [O II] 3726 No 8728 3749.48 3 5 H I 3750 No - So this is the cursed multiplet - no chance of ever seeing it
- 3d .4Pe → 3p .4So followed by 3p .4So → 3s .4Pe
- Moved to its own repo
- ~/Dropbox/orion-oii-paper/
- The singly-excited lines can be pumped by radiative recombination or fluorescence
- The low-L quartet transitions might have a fluorescent contribution
- The s-pumped multiplets (descendants of 4s ^4P)
- 4s ^4P → 3p ^4D
- include V1: 3p ^4D → 3s ^4P
- The d-pumped multiplets (descendants of 3d ^4P and 3d ^4D)
- 3d ^4P,D → 3p ^4P
- 3p ^4P → 3s ^4P
- Note that the d-pumped lines have a small s-pumping contribution and vice-versa
- The s-pumped multiplets (descendants of 4s ^4P)
- The high-L transitions should be pure recombination
- They are described by LK coupling instead of LS coupling
- mainly 4f D,F,G → 3d ^4P,D,F
- The low-L doublet transitions can also have fluorescence (maybe)
- The low-L quartet transitions might have a fluorescent contribution
- The core-excited lines are mainly dielectronic recombination
- But Escalante:2012a say that could also be other routes (including fluorescence)
- They are called
with parentage other than ^3P
in Fang:2013a- They all have parentage of ^1D
- Assuming that they are from DR, they can give T diagnostics
- T(CEL) : 4363 / 5007
- Strongly biased to high-T
- d R / d T > 0
- T(ORL-CEL) : V1 Sum / 4959
- Mostly unbiased (slightly to high-T)
- d R / d T < 0
- R increases with fluorescence
- => T decreases with fluorescence
- T(3d-4f) : V1 Sum / V48a Sum or 4649/4089
- Biased to low-T
- d R / d T > 0
- R increases with fluorescence
- => T increases with fluorescence
- T(DR) : V1 Sum / V15 Sum or 4649/4591
- Mostly unbiased (slightly low-T)
- d R / d T < 0
- R increases with fluorescence
- => T decreases with fluorescence (?)
- That is, assuming that V15 is not fluoresced
- T(3d-4f) < T(DR) ~= T(ORL-CEL) < T(CEL)
- Example: NGC 7009
- T(3d-4f) = 1000 K
- T(DR) = 3000 K
- T(ORL-CEL) = ?
- T(CEL) = 10,000 K
- T(DR) < T(ORL-CEL) < T(CEL) < T(3d-4f)
- Example: Orion (Eduardo nebula)
- T(DR) = 4500 K
- T(ORL-CEL) = 8000 K
- T(CEL) = 8500 K
- T(3d-4f) = 10,000 K
- Example: Orion (Eduardo nebula)
4590.97 | 4595.96 | 4649 | 4649/4591 | 4275.55 | 4649/4276 | 4189.79 | 4649/4190 | 4276/4591 | 4089.29 | 4649/4089 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Cut 1 shock | 34.2 | 34.20 / 0 | 34.20 / 0 | 34.20 / 0 | 0/0 | 34.20 / 0 | |||||
Cut 2 shock | 4.2 | 2.0 | 25.8 | 6.14 | 2.8 | 9.21 | 4.7 | 5.49 | 0.67 | 25.80 / 0 | |
Cut 3 shock | 5.4 | 26.5 | 4.91 | 26.50 / 0 | 7.5 | 3.53 | 0.00 | 26.50 / 0 | |||
Cut 1 neb | 2.7 | 2.2 | 11.2 | 4.15 | 1.4 | 8.00 | 2.3 | 4.87 | 0.52 | 2.5 | 4.48 |
Cut 2 neb | 2.4 | 2.0 | 12.2 | 5.08 | 1.7 | 7.18 | 2.0 | 6.10 | 0.71 | 3.1 | 3.94 |
Cut 3 neb | 2.4 | 1.5 | 12.9 | 5.38 | 1.6 | 8.06 | 2.1 | 6.14 | 0.67 | 2.6 | 4.96 |
Cut 4 | 2.5 | 2.0 | 12.6 | 5.04 | 1.9 | 6.63 | 2.3 | 5.48 | 0.76 | 2.5 | 5.04 |
- Eduardo uses components of V1 as density indicator
- This is fine and is what everyone does
- Then they use 3d-4f lines 4089.29, 4275.55 as Te indicators
- But 4089.29 is disfavored because it is affected by a ghost
- Why these? The T sensitivity is not very high
- Variation in ratio between 3000 → 10000 K (Case B @ 1e4 pcc)
- 4649/4276: 5.58 → 7.52 - factor of 1.35 increasing with T
- 3s-3p / 3d-4f
- 4649/4089: 2.99 → 3.98 - factor of 1.33 increasing with T
- 3s-3p / 3d-4f
- 4649/4190: 5.59 → 3.43 - factor of 1.63 decreasing with T
- 3s-3p / DR
- 4649/4591: 6.00 → 3.70 - factor of 1.62 decreasing with T
- 3s-3p / DR
- 4276/4591: 1.08 → 0.49 - factor of 2.20 decreasing with T
- 3d-4f / DR
- 4649/4276: 5.58 → 7.52 - factor of 1.35 increasing with T
- So, T-diagnostics 1 and 2 are what Eduardo uses
- He gets values of 6.6 to 9.2 for 4649/4276, which would actually suggest T > 16,000 K for HH 529-II shock
- Average nebula is 7.47 +/- 0.34, which gives 9800 +/- 1500 K, which is a bit high
- Uncertainties are quite high however, so this is probably consistent with what is shown in Fig 8 of HH 529 paper
- If there were a 20% fluorescence contribution to V1 as suggested by MUSE analysis, then this would bring the nebula ratio down to 6.23 +/- 0.28, which implies T = 5300 +/- 600 K, which is now a bit on the low side
- For 4649/4089, average nebula is 4.60 +/- 0.25, which implies T = 15,200 +/- 2000 K
- Again, with a 20% fluorescence contribution to 4649, this is reduced to 3.83 +/- 0.21 = T = 8900 +/- 1700 K
- So averaging the 4649/4276 and 4649/4089 gives 12,500 +/- 2700 K, or 7100 +/- 2000 K after correcting for 20% fluorescence
- T-diagnostics 3 and 4 are what Fang:2013a use for NGC 7009
- Nebula has 4649/4591 = 4.15 → 5.38 = 4.9 +/- 0.3 => T = 4500 +/- 500 K
- Nebula has 4649/4190 = 4.87 → 6.14 = 5.65 +/- 0.30 => T = 3100 +/- 200 K
- With the 20% fluorescence correction, these become:
- 4649/4591 = 4.1 +/- 0.2 => T = 7000 +/- 1000 K
- 4649/4190 = 4.71 +/- 0.25 => T = 3900 +/- 500 K
- This is better, but still too low, so maybe the fluorescence correction should be higher
- Finally, T-diagnostic 5 should eliminate dependence on fluorescence (unless the DR lines are fluoresced)
- Nebula 4276/4591 = 0.67 +/- 0.05 => T = 6000 +/- 700 K
- So this is still a bit on the low side, especially since it is a lower limit if there is fluorescent contribution to V15 4591
- Manu results
- 4649/4591 is noisy but varies from 9.0 +/- 2.0 in inner nebula to 6.0 +/- 3.0 in outer nebula
- V1-sum fractional excess is about 1.0 close to Trapezium and is about 0.5 in Big Arc
- So this could mean that corrected 4649/4591 = 4.0 in both cases => T = 7500 +/- 4000 K
- Yes, that makes sense
- 4649/4591 is noisy but varies from 9.0 +/- 2.0 in inner nebula to 6.0 +/- 3.0 in outer nebula
- Adal results
- The 3d-4f lines have a steeper fall of emissivity with T than the V1 lines
- This gives one type of T diagnostic, such as 4649/4089 (V1/V48a) or 4649/4276 (V1/V67)
- E.g., Fig 17 of Fang:2013a, where the theoretical curve agrees reasonably well with what I have calculated from Storey (presumably because they use the same source)
- Note that they measure 4649/4089 = 2.5 for Saturn Nebula, which is much lower than in Orion, and which implies a low T ≈ 1000 - 1500 K
- The ^1D parentage lines (core-excited) have an emissivity that rises with T (dielectronic recombination)
- This gives the second type of T diagnostic, such as 4649/4591 (V1/V15) or 4649/4190 (V1/V36)
- There are also M101 and M105 lines, but these are either weak or masked by other lines in Manu spectra
- Also 4347 line (V16), but it is stuck among stronger lines of V2 (3s-3p ^4P) at 4345 and 4349
log10(T) | 4089.29 | 4275.55 | 4649.13 | 4649/4276 | 4649/4089 | 4189.79 | 4189.58 | 4649/4190 | 4590.97 | 4649/4591 | 4276/4591 |
---|---|---|---|---|---|---|---|---|---|---|---|
2.000 | 1.229E-23 | 7.288E-24 | 2.827E-23 | 3.88 | 2.30 | 1.680E-26 | 6.926E-28 | 1616.11 | 7.061E-26 | 400.37 | 103.21 |
2.100 | 9.925E-24 | 5.993E-24 | 2.270E-23 | 3.79 | 2.29 | 1.362E-26 | 5.075E-28 | 1606.80 | 5.696E-26 | 398.53 | 105.21 |
2.200 | 8.023E-24 | 4.872E-24 | 1.824E-23 | 3.74 | 2.27 | 1.105E-26 | 3.777E-28 | 1596.12 | 4.627E-26 | 394.21 | 105.30 |
2.300 | 6.351E-24 | 3.870E-24 | 1.443E-23 | 3.73 | 2.27 | 8.854E-27 | 2.810E-28 | 1579.64 | 3.731E-26 | 386.76 | 103.73 |
2.400 | 5.110E-24 | 3.080E-24 | 1.160E-23 | 3.77 | 2.27 | 7.259E-27 | 2.183E-28 | 1551.36 | 3.091E-26 | 375.28 | 99.64 |
2.500 | 4.097E-24 | 2.435E-24 | 9.339E-24 | 3.84 | 2.28 | 6.212E-27 | 1.909E-28 | 1458.56 | 2.626E-26 | 355.64 | 92.73 |
2.600 | 3.286E-24 | 1.923E-24 | 7.555E-24 | 3.93 | 2.30 | 6.740E-27 | 2.900E-28 | 1074.68 | 2.444E-26 | 309.12 | 78.68 |
2.700 | 2.639E-24 | 1.521E-24 | 6.150E-24 | 4.04 | 2.33 | 1.204E-26 | 8.153E-28 | 478.40 | 2.859E-26 | 215.11 | 53.20 |
2.800 | 2.120E-24 | 1.205E-24 | 5.031E-24 | 4.18 | 2.37 | 2.754E-26 | 2.295E-27 | 168.63 | 4.359E-26 | 115.42 | 27.64 |
2.900 | 1.701E-24 | 9.577E-25 | 4.130E-24 | 4.31 | 2.43 | 5.714E-26 | 5.130E-27 | 66.32 | 7.246E-26 | 57.00 | 13.22 |
3.000 | 1.368E-24 | 7.610E-25 | 3.406E-24 | 4.48 | 2.49 | 9.909E-26 | 9.173E-27 | 31.46 | 1.129E-25 | 30.17 | 6.74 |
3.100 | 1.098E-24 | 6.051E-25 | 2.817E-24 | 4.66 | 2.57 | 1.446E-25 | 1.357E-26 | 17.81 | 1.562E-25 | 18.03 | 3.87 |
3.200 | 8.801E-25 | 4.809E-25 | 2.334E-24 | 4.85 | 2.65 | 1.834E-25 | 1.727E-26 | 11.63 | 1.926E-25 | 12.12 | 2.50 |
3.300 | 7.032E-25 | 3.816E-25 | 1.934E-24 | 5.07 | 2.75 | 2.087E-25 | 1.952E-26 | 8.47 | 2.157E-25 | 8.97 | 1.77 |
3.400 | 5.595E-25 | 3.019E-25 | 1.603E-24 | 5.31 | 2.87 | 2.193E-25 | 2.012E-26 | 6.70 | 2.244E-25 | 7.14 | 1.35 |
3.500 | 4.435E-25 | 2.381E-25 | 1.328E-24 | 5.58 | 2.99 | 2.182E-25 | 1.934E-26 | 5.59 | 2.214E-25 | 6.00 | 1.08 |
3.600 | 3.495E-25 | 1.871E-25 | 1.099E-24 | 5.87 | 3.14 | 2.092E-25 | 1.764E-26 | 4.84 | 2.107E-25 | 5.22 | 0.89 |
3.700 | 2.743E-25 | 1.463E-25 | 9.083E-25 | 6.21 | 3.31 | 1.953E-25 | 1.547E-26 | 4.31 | 1.954E-25 | 4.65 | 0.75 |
3.800 | 2.142E-25 | 1.139E-25 | 7.502E-25 | 6.59 | 3.50 | 1.786E-25 | 1.318E-26 | 3.91 | 1.776E-25 | 4.22 | 0.64 |
3.900 | 1.665E-25 | 8.827E-26 | 6.197E-25 | 7.02 | 3.72 | 1.600E-25 | 1.098E-26 | 3.62 | 1.584E-25 | 3.91 | 0.56 |
4.000 | 1.289E-25 | 6.812E-26 | 5.124E-25 | 7.52 | 3.98 | 1.402E-25 | 8.974E-27 | 3.43 | 1.385E-25 | 3.70 | 0.49 |
4.100 | 9.936E-26 | 5.236E-26 | 4.255E-25 | 8.13 | 4.28 | 1.201E-25 | 7.217E-27 | 3.34 | 1.184E-25 | 3.59 | 0.44 |
4.200 | 7.644E-26 | 4.015E-26 | 3.568E-25 | 8.89 | 4.67 | 1.004E-25 | 5.714E-27 | 3.36 | 9.901E-26 | 3.60 | 0.41 |
4.300 | 5.915E-26 | 3.094E-26 | 3.059E-25 | 9.89 | 5.17 | 8.202E-26 | 4.456E-27 | 3.54 | 8.115E-26 | 3.77 | 0.38 |
4.400 | 4.707E-26 | 2.448E-26 | 2.740E-25 | 11.19 | 5.82 | 6.552E-26 | 3.424E-27 | 3.97 | 6.575E-26 | 4.17 | 0.37 |
- Values given as (Storey XXX) are effective recomb rates for Case B at 1e4 K and 1e4 pcc
- 4087.15
- Manu sees blend at 4085
- 4085.11 3p ^4D - 3d ^4F (feeds into V1) (Storey 6.2e-26)
- 4086.59 3d ^4F - 4f D 2[2] (Storey 8.5e-28)
- 4086.71 3d ^4F - 4f D 2[2] (Storey 3.6e-29)
- 4087.15 3d ^4F - 4f G 2[3] (Storey 4.4e-26)
- 4087.56 3p ^2P - 4s ^4P (Storey 1.4e-31) intercombination
- Eduardo sees 4085.11 and 4087.15 with same strength in nebula: 1.8e-4 Hb
- Manu sees blend at 4085
- 4089.29
- Manu sees blend
- 4088.27 3d ^4F - 4f G 2[5] (Storey 2.4e-27)
- 4089.29 3d ^4F - 4f G 2[5] (Storey 1.29e-25)
- 4090.27 3p ^2D - 4d ^4F (Storey 2.5e-30)
- 4092.93 3p ^4D - 3d ^4F (Storey 4.2e-26)
- Manu sees blend
- 4095.64
- 4097.26
- 4275.55
- These have overlap with other lines, but he has particular combinations, which he chooses because:
- Limited case sensitivity - I need to check up on this for other ratios
- Unaffected by blending
- Stronger lines
- Ones he chooses are:
- 4661/4089
- This is V1/3d-4f, so should be diagnostic of T and fluorescence, but also weakly of density
- 4414/4089
- 4414.9 is a doublet line in 3s-3p, so will be rad recomb plus maybe fluorescence
- In Orion it is in blend with [Fe II] 4413.78, which is slightly brighter
- This can be measured in Adal slits easily
- Trickier in Manu because of blend with [Fe III] 4607
- Take 4649 / 4609 to be definite
- 4610 is a blend:
- 4609.44 3d.2D_e - 4f F 2[4]
- 4610.20 3d.2D_e - 4f F 2[2]
- 4649 is
- 4649.13 V1 3s.4P - 3p.4D_o
- Adal measurements - units of 1e-4 I(4959)
Zone 4649 4610 4649/4610 A 11.4 1.2 9.50 B 12.8 1.0 12.80 C 12.8 1.0 12.80 D 10.6 1.0 10.60 E 10.7 1.1 9.73 F 10.4 1.2 8.67 - UVES observations (Adal HH202 and Eduardo HH529 are missing the 4610 lines)
- Storey recomb ratios
- Case B, 3000-1e4 K, 1e4 pcc:
T 4649.13 4609.44 4610.20 4649/4610 3.5 1.328E-24 1.989E-25 5.794E-26 5.17 3.6 1.099E-24 1.555E-25 4.562E-26 5.46 3.7 9.083E-25 1.210E-25 3.578E-26 5.79 3.8 7.502E-25 9.373E-26 2.793E-26 6.17 3.9 6.197E-25 7.231E-26 2.170E-26 6.59 4.0 5.124E-25 5.553E-26 1.678E-26 7.09 - Case B, 3000-1e4 K, 1e3 pcc:
T 4649.13 4609.44 4610.20 4649/4610 3.5 9.742E-25 1.844E-25 5.151E-26 4.13 3.6 7.725E-25 1.396E-25 3.960E-26 4.31 3.7 6.114E-25 1.053E-25 3.030E-26 4.51 3.8 4.832E-25 7.947E-26 2.303E-26 4.71 3.9 3.823E-25 5.946E-26 1.746E-26 4.97 4.0 3.031E-25 4.432E-26 1.318E-26 5.27 - Case B, 3000-1e4 K, 1e5 pcc:
T 4649.13 4609.44 4610.20 4649/4610 3.5 1.407E-24 2.046E-25 5.929E-26 5.33 3.6 1.172E-24 1.610E-25 4.683E-26 5.64 3.7 9.757E-25 1.262E-25 3.684E-26 5.98 3.8 8.122E-25 9.859E-26 2.885E-26 6.37 3.9 6.758E-25 7.661E-26 2.248E-26 6.82 4.0 5.627E-25 5.922E-26 1.743E-26 7.34
- Case B, 3000-1e4 K, 1e4 pcc:
- Ratio
- 4317.0: 3s.4P1/2 - 3p.4P3/2^o
- Minor contribution from 4317.7 3d-4f
- Also 4319.6 of same multiplet
- 4303.8: 3d.4P5/2 - 4f.D[3]^o5/2
- 4317.0: 3s.4P1/2 - 3p.4P3/2^o
- Ratio from Escalante:2013a
- With fluorescence: 1.58/0.63 = 2.51
- Just recombination: 0.605 1.58/0.63 = 1.52
- [X] Should check theoretical ratio from Storey
- Full range is 0.56 to 1.2
- Case B, 3000-1e4 K, 1e4 pcc:
T 4303.82 4317.14 4317/4303 3.5 2.236E-25 1.864E-25 0.83 3.6 1.768E-25 1.534E-25 0.87 3.7 1.397E-25 1.264E-25 0.90 3.8 1.100E-25 1.042E-25 0.95 3.9 8.619E-26 8.586E-26 1.00 4.0 6.700E-26 7.073E-26 1.06 - Case B, 3000-1e4 K, 1e3 pcc:
T 4303.82 4317.14 4317/4303 3.5 4.019E-25 2.261E-25 0.56 3.6 3.309E-25 1.876E-25 0.57 3.7 2.718E-25 1.557E-25 0.57 3.8 2.222E-25 1.292E-25 0.58 3.9 1.804E-25 1.071E-25 0.59 4.0 1.453E-25 8.883E-26 0.61 - Case B, 3000-1e4 K, 1e5 pcc:
T 4303.82 4317.14 4317/4303 3.5 2.051E-25 1.827E-25 0.89 3.6 1.603E-25 1.501E-25 0.94 3.7 1.251E-25 1.234E-25 0.99 3.8 9.731E-26 1.013E-25 1.04 3.9 7.529E-26 8.326E-26 1.11 4.0 5.779E-26 6.836E-26 1.18
- Ratio from Manu
- As high as 3
- As low as 1
- Ratio from Eduardo
- cut 2 nebula: 0.028/0.021 = 1.33
- cut 2 shock: 0.071/0.046 = 1.54
- cut 3 nebula: 0.026/0.020 = 1.30
- cut 1 nebula: 0.019/0.018 = 1.06
- cut 4 nebula: 0.027/0.026 = 1.04
- Ratio from Adal HH202
- Nebula: 0.021/0.027 = 0.78 +/- 0.3
- Shocks: 0.045/0.016 = 2.8 +/- 1
- So in summary, the ratios are generally higher than the recombination predictions
- This is now in a separate file:
- The Adal spectra are plotted for 6 different sections of Slit 6
x range 0:40 Red bay 40:50 50:62 67:80 80:95 95:154 - Numbers x correspond to pixels of length 1.2 arcsec along slit
- Note that 62:67 is omitted - corresponds to 159-350
- x=65 → 78 arcsec from left edge
- Total length = 154 1.2 = 185 arcsec
- In units of 1e-4 I(4959) ≈ 1e-4 I(Hb) in the bright zones
- 4649: 10 → 12
- 4642: 7 → 8
- These are about 50% higher than predictions of Escalante:2012a for IC 418
- More details are given down here in Ratios within the V1 multiplet
- Sum V1 = 32 → 36 in these units
- If interpreted in terms of recombination, this implies T = 7500 → 7750 K
- This is copied from Raman project
- Remove continuum from cube
- But we change the wavelengths because we are working with wavsec0
- Total range is 4595 → 5191 Å
import sys
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
from numpy.polynomial import Chebyshev as T
import itertools
try:
DATADIR = sys.argv[1]
SUFFIX = sys.argv[2]
OUTDIR = sys.argv[3]
except IndexError:
sys.exit(f"Usage: {sys.argv[0]} DATADIR SUFFIX OUTDIR")
infile = f"muse-hr-data-wavsec0{SUFFIX}.fits"
hdu = fits.open(f"{DATADIR}/{infile}")["DATA"]
w = WCS(hdu)
nwav, ny, nx = hdu.data.shape
wavpix = np.arange(nwav)
# Two pairs of adjacent sections for the true continuum
# Wavelength sections of clean continuum (lots of small sections)
clean_sections = [
[4610.0, 4616.0], [4624.0, 4627.0], # between C II, N II, O II
[4690.0, 4697.0], [4720.0, 4730.0], # between He I and Ar IV
[4746.0, 4750.0], [4760.0, 4765.0], # between Fe III lines
[4782.0, 4786.0], [4820.0, 4830.0], # next to Hb
[4910.0, 4916.0], [5060.0, 5080.0], # to the red
[5090.0, 5100.0], [5170.0, 5185.0], # to the red
]
cont_slices = []
for wavs in clean_sections:
wavs = 1e-10*np.array(wavs)
_, _, wpix = w.world_to_pixel_values([0, 0], [0, 0], wavs)
cont_slices.append(slice(*wpix.astype(int)))
# Use median over each section to avoid weak lines
cont_maps = np.array([np.median(hdu.data[_, :, :], axis=0) for _ in cont_slices])
cont_wavpix = np.array([np.median(wavpix[_], axis=0) for _ in cont_slices])
# Inefficient but simple algorithm - loop over spaxels
bgdata = np.empty_like(hdu.data)
for j, i in itertools.product(range(ny), range(nx)):
# Fit polynomial to BG
try:
p = T.fit(cont_wavpix, cont_maps[:, j, i], deg=2)
# and fill in the BG spectrum of this spaxel
bgdata[:, j, i] = p(wavpix)
except:
bgdata[:, j, i] = np.nan
for suffix, cube in [
["cont", bgdata],
["cont-sub", hdu.data - bgdata],
# ["cont-div", hdu.data/bgdata],
]:
outfile = infile.replace(".fits", f"-{suffix}.fits")
fits.PrimaryHDU(header=hdu.header, data=cube).writeto(
f"{OUTDIR}/{outfile}", overwrite=True)
print(f"Written {outfile}")
python muse/subtract-continuum-wavsec0.py $DATADIR $SUFFIX $OUTDIR
import sys
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
try:
DATADIR = sys.argv[1]
SUFFIX = sys.argv[2]
OUTDIR = sys.argv[3]
except IndexError:
sys.exit(f"Usage: {sys.argv[0]} DATADIR SUFFIX OUTDIR")
infile = f"muse-hr-data-wavsec0{SUFFIX}-cont-sub.fits"
outfile = f"o_ii-v1-sum{SUFFIX}.fits"
hdu = fits.open(f"{DATADIR}/{infile}")["DATA"]
w = WCS(hdu)
nwav, ny, nx = hdu.data.shape
# Wavelength sections of O II V1 multiplet
v1_sections = [
[49, 71], [79, 83], [90, 102]
]
im = np.zeros((ny, nx))
for i1, i2 in v1_sections:
im += np.sum(hdu.data[i1:i2, :, :], axis=0)
fits.PrimaryHDU(header=w.celestial.to_header(), data=im).writeto(
f"{OUTDIR}/{outfile}", overwrite=True)
print(f"Written {outfile}")
python muse/extract-o_ii-v1-sum.py $DATADIR $SUFFIX $OUTDIR
pix1 | pix2 | wav1 | wav2 | O II V1 lines | Others | Label |
---|---|---|---|---|---|---|
38 | 44 | 4627.3 | 4632.4 | N II 4631, [Ni II] 4628 | N_II-4631 | |
44 | 49 | 4632.4 | 4636.65 | N III 4634 | N_III-4634 | |
49 | 62 | 4636.65 | 4646.0 | 4639, 4642 | N III 4641, N II 4643 | O_II-V1-4639-42 |
62 | 71 | 4646.0 | 4654.5 | 4649, 4651 | O_II-V1-4649-51 | |
79 | 83 | 4662.15 | 4664.7 | 4662 | (Red wing of 4658) | O_II-V1-4662 |
90 | 102 | 4671.5 | 4680.85 | 4674, 4676 | O_II-V1-4674-76 | |
101 | 119 | 4679.15 | 4694.45 | He II 4686 abs | He_II-4686 |
import sys
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
try:
DATADIR = sys.argv[1]
SUFFIX = sys.argv[2]
OUTDIR = sys.argv[3]
except IndexError:
sys.exit(f"Usage: {sys.argv[0]} DATADIR SUFFIX OUTDIR")
infile = f"muse-hr-data-wavsec0{SUFFIX}-cont-sub.fits"
infile_bg = f"muse-hr-data-wavsec0{SUFFIX}-cont.fits"
hdu = fits.open(f"{DATADIR}/{infile}")["DATA"]
hdubg = fits.open(f"{DATADIR}/{infile_bg}")["DATA"]
w = WCS(hdu)
nwav, ny, nx = hdu.data.shape
wavpix = np.arange(nwav)
_, _, wavs = w.pixel_to_world_values([0]*nwav, [0]*nwav, wavpix)
wavs *= 1.e10
for i1, i2, _, _, _, _, label in TAB:
outfile = f"{label}-sum{SUFFIX}.fits"
imsum = np.sum(hdu.data[i1:i2, :, :], axis=0)
fits.PrimaryHDU(
header=w.celestial.to_header(),
data=imsum
).writeto(f"{OUTDIR}/{outfile}", overwrite=True)
print(f"Written {outfile}")
outfile = f"{label}-wav{SUFFIX}.fits"
imwav = np.sum(hdu.data[i1:i2, :, :]*wavs[i1:i2, None, None], axis=0)/imsum
fits.PrimaryHDU(
header=w.celestial.to_header(),
data=imwav
).writeto(f"{OUTDIR}/{outfile}", overwrite=True)
print(f"Written {outfile}")
outfile = f"{label}-bg{SUFFIX}.fits"
imsum = np.sum(hdubg.data[i1:i2, :, :], axis=0)
fits.PrimaryHDU(
header=w.celestial.to_header(),
data=imsum
).writeto(f"{OUTDIR}/{outfile}", overwrite=True)
print(f"Written {outfile}")
python muse/extract-o_ii-v1-sections.py $DATADIR $SUFFIX $OUTDIR
import sys
from pathlib import Path
from distutils.dep_util import newer, newer_group
import numpy as np
sys.path.append("/Users/will/Dropbox/multibin-maps")
from rebin_utils import downsample, oversample, pad_array
from astropy.io import fits
nlist = [1, 2, 4, 8, 16, 32, 64, 128, 256]
mingoods = [2, 2, 2, 2, 2, 2, 2, 2, 2]
try:
datadir = Path(sys.argv[1])
infile = sys.argv[2]
contfile = sys.argv[3]
cont_threshold = float(sys.argv[4])
except:
sys.exit('Usage: {} DATADIR INFILE CONTFILE CONT_THRESHOLD'.format(sys.argv[0]))
hdu = fits.open(datadir / infile)[0]
if hdu.data is None:
hdu = fits.open(datadir / infile)[1]
hdr = hdu.header
# Maximum binning
nmax = nlist[-1]
# continuum image
chdu = fits.open(datadir / contfile)[0]
if chdu.data is None:
chdu = fits.open(datadir / contfile)[1]
# Pad arrays to nearest multiple of nmax
im = pad_array(hdu.data, nmax)
cim = pad_array(chdu.data, nmax)
w = np.ones_like(im)
starmask = cim > cont_threshold
# If we pad the starmask and combine it with the padded image, then we
# automatically deal with the case where the input files have already
# been padded
m = np.isfinite(im) & (~pad_array(starmask, nmax))
for n, mingood in zip(nlist, mingoods):
im[~m] = 0.0
outfile = infile.replace('.fits', '-bin{:03d}.fits'.format(n))
print('Saving', outfile)
# Save both the scaled image and the weights, but at the full resolution
fits.HDUList([
fits.PrimaryHDU(),
fits.ImageHDU(data=oversample(im, n), header=hdr, name='scaled'),
fits.ImageHDU(data=oversample(w, n), header=hdr, name='weight'),
]).writeto(datadir / outfile, clobber=True)
# Now do the rebinning by a factor of two
[im,], m, w = downsample([im,], m, weights=w, mingood=mingood)
python muse/multibin-map-orl.py ../Orion-HH-data/MUSE O_II-V1-4649-51-sum.fits O_II-V1-4649-51-bg.fits 1.0e7
python muse/multibin-map-orl.py ../Orion-HH-data/MUSE O_II-V1-4639-42-sum.fits O_II-V1-4649-51-bg.fits 1.0e7
python muse/multibin-map-orl.py ../Orion-HH-data/MUSE N_III-4634-sum.fits O_II-V1-4649-51-bg.fits 1.0e7
python muse/multibin-map-orl.py ../Orion-HH-data/MUSE N_II-4631-sum.fits O_II-V1-4649-51-bg.fits 1.0e7
python muse/multibin-map-orl.py ../Orion-HH-data/MUSE He_II-4686-sum.fits O_II-V1-4649-51-bg.fits 1.0e7
python muse/multibin-map-orl.py ../Orion-HH-data/MUSE linesum-O_III-5007.fits O_II-V1-4649-51-bg.fits 1.0e7
Have a more generous continuum mask, since otherwise we get bad extinction around th2A
LINES="O_II-V1-4649-51-sum O_II-V1-4639-42-sum N_III-4634-sum N_II-4631-sum He_II-4686-sum linesum-O_III-5007"
for line in $LINES; do
python muse/multibin-map-orl.py ../Orion-HH-data/MUSE ${line}-excorr.fits O_II-V1-4649-51-bg.fits 2.0e6
done
- Try a different strategy this time
- Use a high s/n image, such as O_III-5007, as a template
- Make a series of masks at different levels on this image
- Use those to select the multigrid levels to combine
import sys
from pathlib import Path
import numpy as np
from astropy.io import fits
datadir = Path("~/Dropbox/Orion-HH-data/MUSE").expanduser()
try:
fileroot = sys.argv[1]
threshold = float(sys.argv[2])
STEEPNESS = float(sys.argv[3])
SUFFIX = sys.argv[4]
except IndexError:
sys.exit(f'Usage: {sys.argv[0]} FILEROOT THRESHOLD STEEPNESS SUFFIX')
refhdu = fits.open(datadir / "linesum-O_III-5007-bin001.fits")["SCALED"]
outim = np.empty_like(refhdu.data)
nlist = [1, 2, 4, 8, 16, 32, 64, 128, 256]
for n in reversed(nlist):
hdu = fits.open(datadir / f"{fileroot}-bin{n:03d}.fits")["SCALED"]
mask = refhdu.data >= threshold/n**STEEPNESS
outim[mask] = hdu.data[mask]
fits.PrimaryHDU(
header=hdu.header,
data=outim,
).writeto(
datadir / f"{fileroot}-multibin{SUFFIX}.fits",
overwrite=True,
)
LINES="O_II-V1-4649-51-sum O_II-V1-4639-42-sum N_III-4634-sum N_II-4631-sum linesum-O_III-5007"
for line in $LINES; do
python muse/multibin-combine.py ${line}-excorr 2e9 1.5 -coarse-2e9-1p5
done
LINES="O_II-V1-4649-51-sum O_II-V1-4639-42-sum N_III-4634-sum N_II-4631-sum linesum-O_III-5007"
for line in $LINES; do
python muse/multibin-combine.py ${line}-excorr 1e9 1.5 -medium-1e9-1p5
done
LINES="O_II-V1-4649-51-sum O_II-V1-4639-42-sum N_III-4634-sum N_II-4631-sum linesum-O_III-5007"
for line in $LINES; do
python muse/multibin-combine.py ${line}-excorr 3e8 1.5 -fine-3e8-1p5
done
LINES="O_II-V1-4649-51-sum O_II-V1-4639-42-sum N_III-4634-sum N_II-4631-sum linesum-O_III-5007"
for line in $LINES; do
python muse/multibin-combine.py ${line}-excorr 1e8 1.5 -vfine-1e8-1p5
done
This makes maps of the [S III] temperature on the same grids as used
line=muse-derived-Te-iii
python muse/multibin-combine.py ${line} 2e9 1.5 -coarse-2e9-1p5
python muse/multibin-combine.py ${line} 1e9 1.5 -medium-1e9-1p5
python muse/multibin-combine.py ${line} 3e8 1.5 -fine-3e8-1p5
python muse/multibin-combine.py ${line} 1e8 1.5 -vfine-1e8-1p5
- De-reddening must be done at the highest resolution, so before the multibinning
- There is very little noise in the Balmer decrement map, so this is OK
- In the Orion MUSE project I de-reddened [S III] 6313/9069 using Ha to Pa a
- But then I did another version
- Do extinction correction for all lines
- This used the Hb/Ha map and the Blagrave extinction law from pyneb
import sys
from pathlib import Path
import numpy as np
import pyneb
from astropy.io import fits
# Set up Blagrave 2007 extinction law
REDCORR = pyneb.extinction.red_corr.RedCorr(
law='CCM89 Bal07', R_V=5.5, cHbeta=1.0)
def flambda(wav):
"""Find [(A_lam / A_Hb) - 1] as function of wavelength `wav`
This is the same as given in Table 2 of Blagrave et al (2007)
"""
return np.log10(REDCORR.getCorrHb(wav))
def CHb_from_RHbHa(RHbHa, balmer0=2.874):
"""Find base-10 extinction at H beta from balmer decrement `RHbHa`
Assumes that the intrinsic Balmer decrement is `balmer0`
"""
return np.log10(balmer0*RHbHa) / flambda(6563)
def CHb_from_R6563_9229(RBaPa, RBaPa0=112.0):
"""Find base-10 extinction at H beta from 6563/9229 decrement `RBaPa`
Assumes that the intrinsic decrement is `RBaPa0`
"""
return np.log10(RBaPa/RBaPa0) / (flambda(9229) - flambda(6563))
DATADIR = Path("../Orion-HH-data/MUSE")
if __name__ == '__main__':
try:
prefix = sys.argv[1]
wav = int(sys.argv[2])
except IndexError:
print(f'Usage: {sys.argv[0]} LINEID WAV')
hb_ha = fits.open(DATADIR / 'ratio-4861-6563.fits')[0].data
chb = CHb_from_RHbHa(hb_ha)
clam = (1.0 + flambda(wav))*chb
fn = f"{prefix}.fits"
hdu = fits.open(DATADIR / fn)[0]
fn_new = f"{prefix}-excorr.fits"
fits.PrimaryHDU(
data=hdu.data*10**clam,
header=hdu.header
).writeto(DATADIR / fn_new, overwrite=True)
print(fn_new)
python muse/correct-for-extinction.py linesum-O_III-5007 5007
python muse/correct-for-extinction.py O_II-V1-4649-51-sum 4650
python muse/correct-for-extinction.py O_II-V1-4639-42-sum 4640
python muse/correct-for-extinction.py N_II-4631-sum 4631
python muse/correct-for-extinction.py N_III-4634-sum 4634
- Find scale factor from Adal spectra
- N_II-4643 = 0.5 N_II-4631
- N_III-4641 = 1.5 N_III-4634
import sys
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
from pathlib import Path
datadir = Path("../Orion-HH-data/MUSE")
hdu5007, = fits.open(datadir / f"linesum-O_III-5007-{SUFFIX}.fits")
hdu4650, = fits.open(datadir / f"O_II-V1-4649-51-sum-{SUFFIX}.fits")
hdu4640, = fits.open(datadir / f"O_II-V1-4639-42-sum-{SUFFIX}.fits")
hdu4631, = fits.open(datadir / f"N_II-4631-sum-{SUFFIX}.fits")
hdu4634, = fits.open(datadir / f"N_III-4634-sum-{SUFFIX}.fits")
fits.PrimaryHDU(
header=hdu4650.header,
data=hdu4650.data/hdu5007.data
).writeto(datadir / f"O_II-V1-4649-51-over-5007-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
header=hdu4640.header,
data=hdu4640.data/hdu5007.data
).writeto(datadir / f"O_II-V1-4639-42-over-5007-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
header=hdu4650.header,
data=hdu4650.data/hdu4640.data
).writeto(datadir / f"O_II-V1-4649-51-over-4639-42-{SUFFIX}.fits", overwrite=True)
# Correct the 4639-42 for the N_II and N_III
hdu4640.data -= 0.5*hdu4631.data + 1.5*hdu4634.data
fits.PrimaryHDU(
header=hdu4640.header,
data=hdu4640.data/hdu5007.data
).writeto(datadir / f"O_II-V1-4639-42-minus-N_II_III-over-5007-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
header=hdu4650.header,
data=hdu4650.data/hdu4640.data
).writeto(datadir / f"O_II-V1-4649-51-over-4639-42-minus-N_II_III-{SUFFIX}.fits", overwrite=True)
- In the Manu spectra I calculated various ratios
- Dominant feature is a radial gradient from inside to outside
- Ratios are with respect to sum 4639+4649+4651+4662+4676
- I think 4642 is not included because of contamination
- And 4676 must include 4674
- From the table below, the ratio of the blends 4650/4640 is only predicted to vary by 15%
Ratio Inner Outer 4639 0.14 0.17 4642 0.38 0.34 4649 0.42 0.30 4651 0.15 0.18 4662 0.15 0.2 4676 0.10 0.10 4640 0.52 0.51 4650 0.57 0.48 4650/4640 1.10 0.94 - This is broadly consistent with what we get from MUSE
- In the Adal spectra we have all the lines and 6 regions
- Best to have the table transposed
- Line strengths in units of 0.0001 with respect to 4959
Zone 4639 4642 4649 4651 4662 4674 4676 Sum 40+50/Sum 50/40 50/5007 40/5007 A 4.0 8.3 11.4 4.0 4.9 0.9 2.9 36.4 0.76 1.25 5.3 4.2 B 4.6 8.1 12.8 4.2 4.9 0.9 2.9 38.4 0.77 1.34 5.8 4.4 C 4.5 8.3 12.8 4.5 5.0 0.9 2.8 38.8 0.78 1.35 5.9 4.4 D 3.8 7.2 10.6 3.5 4.0 0.8 2.4 32.3 0.78 1.28 4.8 3.8 E 3.9 7.2 10.7 3.7 4.0 0.7 2.3 32.5 0.78 1.30 4.9 3.8 F 5.0 8.5 10.4 5.1 5.4 1.1 3.3 38.8 0.75 1.15 5.3 4.6 - So the absolute values of 50/40 are a bit larger than Manu’s, but the trend is the same
- Increases towards center
- The sum of the 4640 blend and 4650 blend are about 0.77 of the total sum
- There is a slight dependence on density, but the variation is only 4%
- Supposedly we have
Sum_V1/4959 = 6.56e-5*((T/1.e4)**-0.415)*np.exp(29160.0/T)
- Theoretically: 5007/4959 = 2.91817
- And we can estimate Sum_V1 = (4640 + 4650)/0.77
- Make a table
T 1e4 Sum_V1/4959 6000 104.6 6500 69.6 7000 49.0 7250 41.8 7500 36.1 7750 31.4 8000 27.6 8500 21.7 9000 17.5 10000 12.1 11000 8.9 12000 6.9 - So the Adal measurements suggest T = 7500 +/- 200 K
- [S III] measurements give T = 8500 +/- 300 K
- This is consistent with the factor of 0.9 I found for T(4363/5007) vs T(V1/4959)
- Convert our measurements into a T map
- Also calculate difference and ratio with [S III] temperature
- And finally, calculate “excess” V1 emission
- That is calculate expected ratio V1/4959 from [S III] temperature
- Then multiply this by S(4959) and subtract from S(V1)
import sys
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
from pathlib import Path
datadir = Path("../Orion-HH-data/MUSE")
hdu4650, = fits.open(datadir / f"O_II-V1-4649-51-over-5007-excorr-{SUFFIX}.fits")
hdu4640, = fits.open(datadir / f"O_II-V1-4639-42-minus-N_II_III-over-5007-excorr-{SUFFIX}.fits")
hduTiii, = fits.open(datadir / f"muse-derived-Te-iii-{SUFFIX}.fits")
hdu5007, = fits.open(datadir / f"linesum-O_III-5007-excorr-{SUFFIX}.fits")
def func_ratio_v1_4959(T):
return 6.56e-5*((T/1.e4)**-0.415)*np.exp(29160.0/T)
# Grid of 10 K increments
Tgrid = np.linspace(5000.0, 15000.0, 1001)
Rgrid = func_ratio_v1_4959(Tgrid)
# Reverse arrays since we need ratio in ascending order for np.interp
Rgrid = Rgrid[::-1]
Tgrid = Tgrid[::-1]
RATIO_4640_50_OVER_SUM = 0.77
RATIO_5007_4959 = 2.91817
ratio_v1_4959 = RATIO_5007_4959*(hdu4640.data + hdu4650.data)/RATIO_4640_50_OVER_SUM
T = np.interp(ratio_v1_4959, Rgrid, Tgrid)
T[hdu4650.data < 0.0] = np.nan
T[T == Tgrid.max()] = np.nan
T[T == Tgrid.min()] = np.nan
fits.PrimaryHDU(
header=hdu4650.header,
data=ratio_v1_4959
).writeto(datadir / f"O_II-V1-sum-over-4959-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
header=hdu4650.header,
data=T,
).writeto(datadir / f"T_Op2_ORL_CEL-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
header=hdu4650.header,
data=hduTiii.data - T,
).writeto(datadir / f"Delta_T-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
header=hdu4650.header,
data=T/hduTiii.data,
).writeto(datadir / f"T_ratio-{SUFFIX}.fits", overwrite=True)
ratio_from_T_SIII = func_ratio_v1_4959(hduTiii.data)
V1_from_T_S_III = ratio_from_T_SIII*hdu5007.data/RATIO_5007_4959
V1_total = (hdu4640.data + hdu4650.data)*hdu5007.data/RATIO_4640_50_OVER_SUM
V1_excess = V1_total - V1_from_T_S_III
fits.PrimaryHDU(
header=hdu4650.header,
data=V1_excess,
).writeto(datadir / f"O_II-V1-sum-excess-{SUFFIX}.fits", overwrite=True)
fits.PrimaryHDU(
header=hdu4650.header,
data=V1_excess/V1_from_T_S_III,
).writeto(datadir / f"O_II-V1-sum-frac-excess-{SUFFIX}.fits", overwrite=True)
- This is for T([O III]) instead of T([S III]) but we will assume that is close enough
- Peimbert & Peimbert (2013) equations 10, 11
- give T(4363/4959) and T(V1/4959)
- in terms of T_0(O++) and t^2(O++)
- For convenience, put t0 = T_0/1e4 Koii
- Then we have
- T(4363/4959) / T_0 = 1 + 0.5 (9.13/t0 - 2.68) t^2 = 1 + a t^2
- T(V1/4959) / T_0 = 1 + 0.5 (2.916/t0 - 3.095 + 0.415/(2.916/t0 + 0.415)) t^2 = 1 + b t^2
- Δ T / T_0 = (a - b) t^2
- Variation of the t^2 coefficients with t0
t0 a b a - b 0.7 5.18 0.58 4.6 0.75 4.75 0.44 4.31 0.8 4.37 0.33 4.04 0.85 4.03 0.22 3.81 0.9 3.73 0.13 3.6 0.95 3.47 0.05 3.42 1.00 3.23 -0.03 3.26 - So both T are positively biased wrt mean T_0, especially T(4363/4959)
- We expect T_0 to be similar to, but slightly lower than T(V1/4959)
- Taking T_0 = 7500 +/- 200 K gives (a - b) = 4.31 +/- 0.12
- This implies Δ T = 7500 (4.31 +/- 0.12) t^2 = (32325 +/- 900) t^2
- Or t^2 = (0.031 +/- 0.001) (Δ T / 1000 K)
- This can be crudely estimated from the standard deviation of T([S III])
- Measured in a few representative boxes
T mean stddev t^2 8284 228.662 0.0008 8222.34 267.187 0.0011 8262.28 148.677 0.0003 8165.87 314.53 0.0015 7756.21 347.089 0.0020 7690.31 183.44 0.0006 7665.54 202.199 0.0007 7658.65 218.946 0.0008 - Below the line are from T(V1/4959), although only for medium and coarse gridding since otherwise noise dominates
- Anyway, it looks like plane-of-sky t^2 is about 0.001 for either diagnostic
- Only allow positive values
import sys
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
from pathlib import Path
datadir = Path("../Orion-HH-data/MUSE")
im = None
for suffix in [
"coarse-2e9-1p5",
"medium-1e9-1p5",
"fine-3e8-1p5",
# "vfine-1e8-1p5",
]:
hdu, = fits.open(datadir / f"O_II-V1-sum-excess-multibin-{suffix}.fits")
if im is None:
im = np.empty_like(hdu.data)
m = hdu.data > 0.0
im[m] = hdu.data[m]
fits.PrimaryHDU(
header=hdu.header,
data=im,
).writeto(datadir / f"O_II-V1-sum-excess-combo.fits", overwrite=True)
- Use the 6463 line to remove the recombination contribution from 7231
- With O II, try to subtract a fraction of [O III] 5007 from 4651, assuming a T
- The excess O II certainly looks very much like fluorescence
- Many of the detailed morphologies are the same between O II and C II
- The fractional excess is about 0.8 times the T(S_III) prediction in the Big Arc
- But much higher around Trapezium
- A more realistic approach would be to combine T(S_III) with a t^2 value derived from plane-of-sky variations
- This might give a slightly larger predicted S(V1), so slightly less excess
- This gives another T estimate for the singly-ionized metals zone
- 4649, 4651 are blended
- 4642, 4639 are blended with N II and N III too
- 4674 and 4676 are blended
- 4631 is pure N II
- 4607 is pure N II